On the global stability of the endemic state in an epidemic model with vaccination

被引:10
|
作者
Parsamanesh, Mahmood [1 ]
Farnoosh, Rahman [2 ]
机构
[1] Univ Zabol, Fac Sci, Dept Math, Zabol, Iran
[2] Iran Univ Sci & Technol, Fac Math Sci, Tehran, Iran
关键词
SIS epidemic model; Vaccination; Endemic equilibrium; Global stability; Geometric approach; DISCRETE;
D O I
10.1007/s40096-018-0271-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates an SIS epidemic model with variable population size including a vaccination program. Dynamics of the endemic equilibrium of the model are obtained, and it will be shown that this equilibrium exists and is locally asymptotically stable when R-0 > 1. In this case, the disease uniformly persists, and moreover, using a geometric approach we conclude that the model is globally asymptotically stable under some conditions. Also, a numerical discussion is given to verify the theoretical results.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [41] GLOBAL STABILITY OF AN EPIDEMIC MODEL FOR VECTOR-BORNE DISEASE
    Hongzhi YANG Faculty of Science
    Department of Mathematics
    JournalofSystemsScience&Complexity, 2010, 23 (02) : 279 - 292
  • [42] Global stability in a diffusive cholera epidemic model with nonlinear incidence
    Chen, Xiaodan
    Cui, Renhao
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [43] Global stability of an epidemic model for vector-borne disease
    Hongzhi Yang
    Huiming Wei
    Xuezhi Li
    Journal of Systems Science and Complexity, 2010, 23 : 279 - 292
  • [44] Global stability of an epidemic model for vector-borne disease
    Yang, Hongzhi
    Wei, Huiming
    Li, Xuezhi
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (02) : 279 - 292
  • [45] Stability analysis of a discrete SIRS epidemic model with vaccination
    Xiang, Lei
    Zhang, Yuyue
    Huang, Jicai
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (03) : 309 - 327
  • [46] Stability analysis and optimal vaccination of an SIR epidemic model
    Zaman, Gul
    Kang, Yong Han
    Jung, Il Hyo
    BIOSYSTEMS, 2008, 93 (03) : 240 - 249
  • [47] Global Stability of a Nonlocal Epidemic Model with Delay
    Zhang, Liang
    Sun, Jian-Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (03): : 577 - 587
  • [48] On the global stability of an epidemic model of computer viruses
    Parsaei, Mohammad Reza
    Javidan, Reza
    Kargar, Narges Shayegh
    Nik, Hassan Saberi
    THEORY IN BIOSCIENCES, 2017, 136 (3-4) : 169 - 178
  • [49] On the global stability of an epidemic model of computer viruses
    Mohammad Reza Parsaei
    Reza Javidan
    Narges Shayegh Kargar
    Hassan Saberi Nik
    Theory in Biosciences, 2017, 136 : 169 - 178
  • [50] Stability and bifurcations in a discrete-time epidemic model with vaccination and vital dynamics
    Parsamanesh, Mahmood
    Erfanian, Majid
    Mehrshad, Saeed
    BMC BIOINFORMATICS, 2020, 21 (01)