A basic study of a fractional integral operator with extended Mittag-Leffler kernel

被引:1
|
作者
Rahman, Gauhar [1 ]
Suwan, Iyad [2 ]
Nisar, Kottakkaran Sooppy [3 ]
Abdeljawad, Thabet [4 ,5 ]
Samraiz, Muhammad [6 ]
Ali, Asad [1 ]
机构
[1] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan
[2] Arab Amer Univ, Dept Math & Stat, POB 240, Zababdeh 13, Jenin, Palestine
[3] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawser 11991, Saudi Arabia
[4] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[6] Univ Sargodha, Samraiz Dept Math, POB 40100, Sargodha, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
关键词
Mittag-Leffler function; fractional integral; Prabhakar fractional integral; POCHHAMMER SYMBOL; INEQUALITIES; DERIVATIVES; EQUATIONS; PRODUCT;
D O I
10.3934/math.2021736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this present paper, the basic properties of an extended Mittag-Leffler function are studied. We present some fractional integral and differential formulas of an extended Mittag-Leffler function. In addition, we introduce a new extension of Prabhakar type fractional integrals with an extended Mittag-Leffler function in the kernel. Also, we present certain basic properties of the generalized Prabhakar type fractional integrals.
引用
收藏
页码:12757 / 12770
页数:14
相关论文
共 50 条
  • [1] Fractional integral operator associated with extended Mittag-Leffler function
    Nadir, Aneela
    Khan, Adnan
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2019, 6 (02): : 1 - 5
  • [2] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
    Srivastava, H. M.
    Tomovski, Zivorad
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 198 - 210
  • [3] On the recurrent computation of fractional operator with Mittag-Leffler kernel
    Bohaienko, Vsevolod
    APPLIED NUMERICAL MATHEMATICS, 2021, 162 : 137 - 149
  • [4] Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Choi, Junesang
    Mubeen, Shahid
    Arshad, Muhammad
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 125 - 134
  • [5] ON AN EXTENSION OF THE OPERATOR WITH MITTAG-LEFFLER KERNEL
    Al-Refai, Mohammed
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [6] On a Unified Mittag-Leffler Function and Associated Fractional Integral Operator
    Zhang, Yanyan
    Farid, Ghulam
    Salleh, Zabidin
    Ahmad, Ayyaz
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] The composition of extended Mittag-Leffler functions with pathway integral operator
    G Rahman
    A Ghaffar
    S Mubeen
    M Arshad
    SU Khan
    Advances in Difference Equations, 2017
  • [8] The composition of extended Mittag-Leffler functions with pathway integral operator
    Rahman, G.
    Ghaffar, A.
    Mubeen, S.
    Arshad, M.
    Khan, S. U.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [9] GRUSS TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR INVOLVING THE EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozata, Filiz
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (03) : 422 - 434
  • [10] A Note on Fractional Integral Operator Associated with Multiindex Mittag-Leffler Functions
    Choi, Junesang
    Agarwal, Praveen
    FILOMAT, 2016, 30 (07) : 1931 - 1939