LQR-Based Optimal Leader-Follower Consensus of Second-Order Multi-agent Systems
被引:2
作者:
Li, Zonggang
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
Peking Univ, Coll Engn, Intelligent Control Lab, Beijing 100871, Peoples R ChinaLanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
Li, Zonggang
[1
,2
]
Zhang, Tongzhou
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R ChinaLanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
Zhang, Tongzhou
[1
]
Xie, Guangming
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Coll Engn, Intelligent Control Lab, Beijing 100871, Peoples R ChinaLanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
Xie, Guangming
[2
]
机构:
[1] Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
[2] Peking Univ, Coll Engn, Intelligent Control Lab, Beijing 100871, Peoples R China
来源:
PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL 2
|
2016年
/
360卷
关键词:
Multi-agent systems;
Consensus;
Inverse optimality;
Linear quadratic regulator;
AGENTS;
D O I:
10.1007/978-3-662-48365-7_36
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper considers an optimal consensus problem of second-order leader-follower multi-agent systems by using inverse optimality and LMI method. For a given control input, under the condition that the communication topology among followers is undirected connected, a positive definite matrix in a linear quadratic performance index function is obtained, which makes the linear quadratic performance index function to obtain the minimum value. Meanwhile, through theory analysis, we prove that the coefficient matrix of the given control input is the optimal feedback gain matrix. The simulation results show the effectiveness of our conclusions.