LQR-Based Optimal Leader-Follower Consensus of Second-Order Multi-agent Systems

被引:2
作者
Li, Zonggang [1 ,2 ]
Zhang, Tongzhou [1 ]
Xie, Guangming [2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
[2] Peking Univ, Coll Engn, Intelligent Control Lab, Beijing 100871, Peoples R China
来源
PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL 2 | 2016年 / 360卷
关键词
Multi-agent systems; Consensus; Inverse optimality; Linear quadratic regulator; AGENTS;
D O I
10.1007/978-3-662-48365-7_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers an optimal consensus problem of second-order leader-follower multi-agent systems by using inverse optimality and LMI method. For a given control input, under the condition that the communication topology among followers is undirected connected, a positive definite matrix in a linear quadratic performance index function is obtained, which makes the linear quadratic performance index function to obtain the minimum value. Meanwhile, through theory analysis, we prove that the coefficient matrix of the given control input is the optimal feedback gain matrix. The simulation results show the effectiveness of our conclusions.
引用
收藏
页码:353 / 361
页数:9
相关论文
共 11 条
[1]   Optimal Linear-Consensus Algorithms: An LQR Perspective [J].
Cao, Yongcan ;
Ren, Wei .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03) :819-830
[2]   Cooperative Optimal Control for Multi-Agent Systems on Directed Graph Topologies [J].
Hengster-Movric, Kristian ;
Lewis, Frank L. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (03) :769-774
[3]   Coordination of groups of mobile autonomous agents using nearest neighbor rules [J].
Jadbabaie, A ;
Lin, J ;
Morse, AS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :988-1001
[4]   FINITE-TIME OPTIMAL FORMATION CONTROL FOR SECOND-ORDER MULTIAGENT SYSTEMS [J].
Liu, Yongfang ;
Geng, Zhiyong .
ASIAN JOURNAL OF CONTROL, 2014, 16 (01) :138-148
[5]   LQR-based optimal topology of leader-following consensus [J].
Ma, Jingying ;
Zheng, Yuanshi ;
Wang, Long .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (17) :3404-3421
[6]   Consensus problems in networks of agents with switching topology and time-delays [J].
Olfati-Saber, R ;
Murray, RM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (09) :1520-1533
[7]  
Ren W, 2008, COMMUN CONTROL ENG, P3
[8]   Coordinated collective motion of groups of autonomous mobile robots: Analysis of Vicsek's model [J].
Savkin, AV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (06) :981-983
[9]   Optimal Consensus Seeking in a Network of Multiagent Systems: An LMI Approach [J].
Semsar-Kazerooni, Elham ;
Khorasani, Khashayar .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02) :540-547
[10]   NOVEL TYPE OF PHASE-TRANSITION IN A SYSTEM OF SELF-DRIVEN PARTICLES [J].
VICSEK, T ;
CZIROK, A ;
BENJACOB, E ;
COHEN, I ;
SHOCHET, O .
PHYSICAL REVIEW LETTERS, 1995, 75 (06) :1226-1229