High Wind Speed Inversion Model of CYGNSS Sea Surface Data Based on Machine Learning

被引:17
作者
Zhang, Yun [1 ]
Yin, Jiwei [1 ]
Yang, Shuhu [1 ]
Meng, Wanting [2 ]
Han, Yanling [1 ]
Yan, Ziyu [1 ]
机构
[1] Shanghai Ocean Univ, Shanghai Marine Intelligent Informat & Nav Remote, Shanghai 201306, Peoples R China
[2] Shanghai Spaceflight Inst TT&C & Telecommun, Shanghai 201109, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GNSS-R; CYGNSS; high wind speed inversion; SVR; PCA-SVR; CNN; RETRIEVAL;
D O I
10.3390/rs13163324
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In response to the deficiency of the detection capability of traditional remote sensing means (scatterometer, microwave radiometer, etc.) for high wind speed above 25 m/s, this paper proposes a GNSS-R technique combined with a machine learning method to invert high wind speed at sea surface. The L1-level satellite-based data from the Cyclone Global Navigation Satellite System (CYGNSS), together with the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) data, constitute the original sample set, which is processed and trained with Support Vector Regression (SVR), the combination of Principal Component Analysis (PCA) and SVR (PCA-SVR), and Convolutional Neural Network (CNN) methods, respectively, to finally construct a sea surface high wind speed inversion model. The three models for high wind speed inversion are certified by the test data collected during Typhoon Bavi in 2020. The results show that all three machine learning models can be used for high wind speed inversion on sea surface, among which the CNN method has the highest inversion accuracy with a mean absolute error of 2.71 m/s and a root mean square error of 3.80 m/s. The experimental results largely meet the operational requirements for high wind speed inversion accuracy.
引用
收藏
页数:16
相关论文
共 31 条
[1]  
Al-Khaldi MM, 2021, IEEE J-STARS, V14, P3591, DOI [10.1109/JSTARS.2021.3066406, 10.1109/jstars.2021.3066406]
[2]   Track-Based Cyclone Maximum Wind Retrievals Using the Cyclone Global Navigation Satellite System (CYGNSS) Mission Full DDMs [J].
Al-Khaldi, Mohammad M. ;
Johnson, Joel T. ;
Kang, Younghun ;
Katzberg, Steven J. ;
Bringer, Alexandra ;
Kubatko, Ethan ;
Wood, Dylan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :21-29
[3]  
[Anonymous], 2006, Journal of the American Statistical Association
[4]  
Bergadano F., 1997, LNCS, V11, P171, DOI [10.1007/3-540-57868-4_57, DOI 10.1007/3-540-57868-4_57]
[5]   Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables [J].
Cardellach, Estel ;
Nan, Yang ;
Li, Weiqiang ;
Padulles, Ramon ;
Ribo, Semi ;
Rius, Antonio .
REMOTE SENSING, 2020, 12 (23) :1-24
[6]   Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission [J].
Clarizia, Maria Paola ;
Ruf, Christopher S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4419-4432
[7]   Spaceborne GNSS-R Minimum Variance Wind Speed Estimator [J].
Clarizia, Maria Paola ;
Ruf, Christopher S. ;
Jales, Philip ;
Gommenginger, Christine .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11) :6829-6843
[8]  
[高涵 Gao Han], 2019, [航空学报, Acta Aeronautica et Astronautica Sinica], V40
[9]  
[龚伟伟 Gong Weiwei], 2015, [冰川冻土, Journal of Glaciology and Geocryology], V37, P1497
[10]   Europe's offshore winds assessed with synthetic aperture radar, ASCAT and WRF [J].
Hasager, Charlotte B. ;
Hahmann, Andrea N. ;
Ahsbahs, Tobias ;
Karagali, Ioanna ;
Sile, Tija ;
Badger, Merete ;
Mann, Jakob .
WIND ENERGY SCIENCE, 2020, 5 (01) :375-390