Atomistic investigation on superelasticity of NiTi shape memory alloy with complex microstructures based on molecular dynamics simulation

被引:67
作者
Zhang, Yanqiu [1 ]
Jiang, Shuyong [1 ]
Wang, Man [2 ]
机构
[1] Harbin Engn Univ, Coll Mech & Elect Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Microstructures; Phase transformation; Metallic material; Constitutive behaviour; Shape memory alloy; STRESS-INDUCED TRANSFORMATION; SEVERE PLASTIC-DEFORMATION; MARTENSITIC PHASE-TRANSFORMATION; METALLIC GLASSES; GRAIN-BOUNDARY; TRANSITION BEHAVIOR; SUPER-ELASTICITY; AUSTENITE PHASE; CU-ZR; SIZE;
D O I
10.1016/j.ijplas.2019.09.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Superelasticity of NiTi shape memory alloy (SMA) with complex microstructures is investigated at the atomistic scale based on molecular dynamics (MD) simulation. Six models representing different microstructures are established and they deal with BG (bicrystal grain) model, NG (nanocrystal grain) model, MG (mixed grain) model, which stands for the mixture of a coarse grain and NG, PS (polymorphic structure) model, which is composed of a coarse grain, NG and amorphous phase, {114} twin model and {112} twin model. Only the NG model presents a perfect stress plateau in the case of loading under the tensile strain of 8%. However, PS model, {114} twin model and {112} twin model show a monotonic stress rise during loading and they exhibit a monotonic stress decline during unloading. In particular, {112} twin model exhibits an extremely high stress level. Irrecoverable strain occurs in all the six models, where {114} twin model possesses the largest irrecoverable strain, whereas {112} twin model has the smallest irrecoverable strain. Dislocation slip, amorphous phase and grain boundary play an important role in the formation of the irrecoverable strain. Stress-induced martensitic transformation of NiTi SMA is influenced by grain size, grain orientation, phase composition, substructure and temperature, where the phase transformation behaviour of any given grain is closely related to its adjacent environment as well. As for the {112} twin model, martensitic transformation is not induced in the grain interior, but at the grain boundaries. It can be deduced that the exceptional superelasticity of {112} twin model is not completely attributed to stress-induced martensitic transformation.
引用
收藏
页码:27 / 51
页数:25
相关论文
共 89 条
[1]   Tensile properties of AlCrCoFeCuNi glassy alloys: A molecular dynamics simulation study [J].
Afkham, Y. ;
Bahramyan, M. ;
Mousavian, R. Taherzadeh ;
Brabazon, D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 698 :143-151
[2]   Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy [J].
Ahadi, A. ;
Matsushita, Y. ;
Sawaguchi, T. ;
Sun, Q. P. ;
Tsuchiya, K. .
ACTA MATERIALIA, 2017, 124 :79-92
[3]   Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction [J].
Ahadi, Aslan ;
Sun, Qingping .
ACTA MATERIALIA, 2015, 90 :272-281
[4]   Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J].
Ahadi, Aslan ;
Sun, Qingping .
ACTA MATERIALIA, 2014, 76 :186-197
[5]   Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-Effects of grain size [J].
Ahadi, Aslan ;
Sun, Qingping .
APPLIED PHYSICS LETTERS, 2013, 103 (02)
[6]   Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature [J].
Aitken, Zachary H. ;
Jang, Dongchan ;
Weinberger, Christopher R. ;
Greer, Julia R. .
SMALL, 2014, 10 (01) :100-108
[7]   Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation [J].
Auricchio, F. ;
Bonetti, E. ;
Scalet, G. ;
Ubertini, F. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2014, 59 :30-54
[8]   Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy [J].
Benafan, O. ;
Noebe, R. D. ;
Padula, S. A., II ;
Garg, A. ;
Clausen, B. ;
Vogel, S. ;
Vaidyanathan, R. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 51 :103-121
[9]   Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition [J].
Bimber, Beth A. ;
Hamilton, Reginald F. ;
Keist, Jayme ;
Palmer, Todd A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 674 :125-134
[10]   Effects of Ag and Zr solutes on dislocation emission from Σ11(332) [110] symmetric tilt grain boundaries in Cu: Bigger is not always better [J].
Borovikov, Valery ;
Mendelev, Mikhail I. ;
King, Alexander H. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 109 :79-87