A general existence result for the Toda system on compact surfaces

被引:48
|
作者
Battaglia, Luca [1 ]
Jevnikar, Aleks [1 ]
Malchiodi, Andrea [2 ]
Ruiz, David [3 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[3] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Geometric PDEs; Variational methods; Min-max schemes; MEAN-FIELD EQUATION; BLOW-UP ANALYSIS; ANALYTIC ASPECTS; CURVATURE; BEHAVIOR;
D O I
10.1016/j.aim.2015.07.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the following Toda system of equations on a compact surface: { -Delta u(1) = 2 rho(1) (h(1)e(u1)/integral(Sigma)h(1)e(u1)dV(g) - 1) - rho(2) (h(2)e(u2)/integral(Sigma)h(2)e(u2)dV(g) - 1) -4 pi Sigma(m)(j=1)alpha(1,j)(delta(pj) - 1), -Delta u(2) = 2 rho(2) (h(2)e(u2)/integral(Sigma)h(2)e(u2)dV(g) - 1) - rho(1) (h(1)e(u1)/integral(Sigma)h(1)e(u1)dV(g) - 1) -4 pi Sigma(m)(j=1)alpha(2,j)(delta(pj) - 1), which is motivated by the study of models in non-abelian Chern-Simons theory. Here h(1), h(2) are smooth positive functions, rho(1), rho(2) two positive parameters, p(i), points of the surface and alpha(1,i), alpha(2,j) non-negative numbers. We prove a general existence result using variational methods. The same analysis applies to the following mean field equation -Delta u = rho(1) (he(u)/integral(Sigma)he(u)dV(g) - 1) - rho(2) (he(-u)/integral(Sigma)he(-u)dV(g) - 1), which arises in fluid dynamics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:937 / 979
页数:43
相关论文
共 50 条