Two-bath spin-boson model: Phase diagram and critical properties

被引:29
作者
Bruognolo, Benedikt [1 ,2 ]
Weichselbaum, Andreas [1 ,2 ]
Guo, Cheng [1 ,2 ]
von Delft, Jan [1 ,2 ]
Schneider, Imke [3 ,4 ]
Vojta, Matthias [5 ]
机构
[1] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[2] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany
[3] Tech Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[4] Tech Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[5] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 24期
关键词
LONG-RANGE INTERACTIONS; CRITICAL EXPONENTS; RENORMALIZATION-GROUP; KONDO PROBLEM; MAGNETIC-IMPURITIES; QUANTUM; TRANSITIONS; STATE; DYNAMICS; SYMMETRY;
D O I
10.1103/PhysRevB.90.245130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin-boson model, describing a two-level system coupled to a bath of harmonic oscillators, is a generic model for quantum dissipation, with manifold applications. It has also been studied as a simple example for an impurity quantum phase transition. Here, we present a detailed study of a U(1)-symmetric two-bath spin-boson model, where two different components of an SU(2) spin 1/2 are coupled to separate dissipative baths. Nontrivial physics arises from the competition of the two dissipation channels, resulting in a variety of phases and quantum phase transitions. We employ a combination of analytical and numerical techniques to determine the properties of both the stable phases and the quantum critical points. In particular, we find a critical intermediate-coupling phase which is bounded by a continuous quantum phase transition which violates the quantum-to-classical correspondence.
引用
收藏
页数:20
相关论文
共 61 条
[1]   Sparse Polynomial Space Approach to Dissipative Quantum Systems: Application to the Sub-Ohmic Spin-Boson Model [J].
Alvermann, A. ;
Fehske, H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (15)
[2]   SOLUTION OF THE MULTICHANNEL KONDO PROBLEM [J].
ANDREI, N ;
DESTRI, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (05) :364-367
[3]  
[Anonymous], 1993, TheKondo Problem to Heavy Fermions
[4]   Realizing a Kondo-Correlated State with Ultracold Atoms [J].
Bauer, Johannes ;
Salomon, Christophe ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2013, 111 (21)
[5]   Numerical renormalization group for quantum impurities in a bosonic bath [J].
Bulla, R ;
Lee, HJ ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW B, 2005, 71 (04)
[6]   Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model [J].
Bulla, R ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[7]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[8]   Quantum magnetic impurities in magnetically ordered systems -: art. no. 096401 [J].
Castro Neto, AH ;
Novais, E ;
Borda, L ;
Zaránd, G ;
Affleck, I .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[9]   Generalized Polaron Ansatz for the Ground State of the Sub-Ohmic Spin-Boson Model: An Analytic Theory of the Localization Transition [J].
Chin, Alex W. ;
Prior, Javier ;
Huelga, Susana F. ;
Plenio, Martin B. .
PHYSICAL REVIEW LETTERS, 2011, 107 (16)
[10]   Kondo Decoherence: Finding the Right Spin Model for Iron Impurities in Gold and Silver [J].
Costi, T. A. ;
Bergqvist, L. ;
Weichselbaum, A. ;
von Delft, J. ;
Micklitz, T. ;
Rosch, A. ;
Mavropoulos, P. ;
Dederichs, P. H. ;
Mallet, F. ;
Saminadayar, L. ;
Baeuerle, C. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)