Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries

被引:31
|
作者
Dai, Ziyang [1 ]
Yu, Jing [2 ]
Liu, Jiapeng [2 ]
Liu, Rong [1 ]
Sun, Qi [1 ]
Chen, Dengjie [1 ]
Ciucci, Francesco [2 ,3 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Dept Chem, Guangzhou 510632, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state battery; Perovskite Li conductor; Ionic conductivity; Nonflammable composite polymer membrane; TOTAL-ENERGY CALCULATIONS; HIGH IONIC-CONDUCTIVITY; FLUOROETHYLENE CARBONATE; LITHIUM BATTERIES; STABILITY; CHALLENGES; INTERFACE; MEMBRANE; SN; GE;
D O I
10.1016/j.jpowsour.2020.228182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state Li-metal batteries are promising as next-generation energy storage devices. However, the main bottlenecks are the poor conductivity of the solid electrolyte and the high interfacial resistance. While polymers exhibit a lower interfacial resistance in comparison to ceramics, they often require the inclusion of flammable solvents. In this work, highly conductive composite polymer electrolyte (CPE) membranes are prepared by integrating a poly(vinylidene fluoride) matrix (PVDF) with a Li-conductive perovskite (i.e., Li0.38Sr0.44Ta0.70H-f(0.30)O(2.95)F(0.05), LSTHF), a flame-retarding solvent (i.e., trimethyl phosphate (TMP)), and a Li salt (i.e., LiClO4). The CPE membrane with 10 wt% LSTHF (CPE-10) exhibits conductivities as high as 0.53 mS cm(-1) at room temperature (RT) and 0.36 mS cm(-1) at 0 degrees C. Furthermore, prototype batteries, including the CPE-10 electrolyte, show high initial discharge capacities, good rate capabilities, and stable cycling performance at either RT or 5 and 60 degrees C. This study illustrates that including a Li-conductive perovskite and TMP in a PVDF-based polymer material could yield safe, high-performance quasi-solid-state Li-metal batteries capable of operating over a relatively wide temperature range.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Recent advances of composite electrolytes for solid-state Li batteries
    Xu, Laiqiang
    Li, Jiayang
    Shuai, Honglei
    Luo, Zheng
    Wang, Baowei
    Fang, Susu
    Zou, Guoqiang
    Hou, Hongshuai
    Peng, Hongjian
    Ji, Xiaobo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 524 - 548
  • [22] PY13FSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries
    Gao, Yongsheng
    Chen, Guanghai
    Wang, Xinran
    Yang, Haoyi
    Wang, Zhaohua
    Lin, Weiran
    Xu, Huajie
    Bai, Ying
    Wu, Chuan
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) : 22981 - 22991
  • [23] Polymer electrolytes with high cation transport number for rechargeable Li-metal batteries: current status and future direction
    Shan, Xinyuan
    Song, Zhaowei
    Ding, Hang
    Li, Lengwan
    Tian, Yuhang
    Sokolov, Alexei P.
    Tian, Ming
    Xu, Kang
    Cao, Peng-Fei
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (22) : 8457 - 8481
  • [24] Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces
    Kim, Kun Joong
    Balaish, Moran
    Wadaguchi, Masaki
    Kong, Lingping
    Rupp, Jennifer L. M.
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)
  • [25] Electrochemical investigation of PVDF: HFP gel polymer electrolytes for quasi-solid-state Li-O2 batteries: effect of lithium salt type and concentration
    Celik, Mustafa
    Kizilaslan, Abdulkadir
    Can, Mustafa
    Cetinkaya, Tugrul
    Akbulut, Hatem
    ELECTROCHIMICA ACTA, 2021, 371
  • [26] Self-Standing Highly Conductive Solid Electrolytes Based on Block Copolymers for Rechargeable All-Solid-State Lithium-Metal Batteries
    Aldalur, Itziar
    Martinez-Ibanez, Maria
    Piszcz, Michal
    Zhang, Heng
    Armanda, Michel
    BATTERIES & SUPERCAPS, 2018, 1 (04) : 149 - 159
  • [27] A highly conductive quasi-solid-state electrolyte based on helical silica nanofibers for lithium batteries
    Hu, Jiemei
    Wang, Haoran
    Yang, Yonggang
    Li, Yi
    Wu, Qi-hui
    RSC ADVANCES, 2021, 11 (54) : 33858 - 33866
  • [28] Porous polymer electrolytes for long-cycle stable quasi-solid-state magnesium batteries
    Wang, Tiantian
    Zhao, Xudong
    Liu, Fanfan
    Fan, Li-Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2021, 59 : 608 - 614
  • [29] Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries
    Ding, Wen-Qiang
    Lv, Fei
    Xu, Ning
    Wu, Meng-Tao
    Liu, Jian
    Gao, Xue-Ping
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) : 4581 - 4601
  • [30] In-Situ Polymerization Confined PEGDME-Based Composite Quasi-Solid-State Electrolytes for Lithium Metal Batteries
    Tong, Rong-Ao
    Huang, Yilei
    Feng, Chang
    Dong, Yanhao
    Wang, Chang-An
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)