Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries

被引:31
|
作者
Dai, Ziyang [1 ]
Yu, Jing [2 ]
Liu, Jiapeng [2 ]
Liu, Rong [1 ]
Sun, Qi [1 ]
Chen, Dengjie [1 ]
Ciucci, Francesco [2 ,3 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Dept Chem, Guangzhou 510632, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state battery; Perovskite Li conductor; Ionic conductivity; Nonflammable composite polymer membrane; TOTAL-ENERGY CALCULATIONS; HIGH IONIC-CONDUCTIVITY; FLUOROETHYLENE CARBONATE; LITHIUM BATTERIES; STABILITY; CHALLENGES; INTERFACE; MEMBRANE; SN; GE;
D O I
10.1016/j.jpowsour.2020.228182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state Li-metal batteries are promising as next-generation energy storage devices. However, the main bottlenecks are the poor conductivity of the solid electrolyte and the high interfacial resistance. While polymers exhibit a lower interfacial resistance in comparison to ceramics, they often require the inclusion of flammable solvents. In this work, highly conductive composite polymer electrolyte (CPE) membranes are prepared by integrating a poly(vinylidene fluoride) matrix (PVDF) with a Li-conductive perovskite (i.e., Li0.38Sr0.44Ta0.70H-f(0.30)O(2.95)F(0.05), LSTHF), a flame-retarding solvent (i.e., trimethyl phosphate (TMP)), and a Li salt (i.e., LiClO4). The CPE membrane with 10 wt% LSTHF (CPE-10) exhibits conductivities as high as 0.53 mS cm(-1) at room temperature (RT) and 0.36 mS cm(-1) at 0 degrees C. Furthermore, prototype batteries, including the CPE-10 electrolyte, show high initial discharge capacities, good rate capabilities, and stable cycling performance at either RT or 5 and 60 degrees C. This study illustrates that including a Li-conductive perovskite and TMP in a PVDF-based polymer material could yield safe, high-performance quasi-solid-state Li-metal batteries capable of operating over a relatively wide temperature range.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries
    Mazzapioda, Lucia
    Tsurumaki, Akiko
    Di Donato, Graziano
    Adenusi, Henry
    Navarra, Maria Assunta
    Passerini, Stefano
    ENERGY MATERIALS, 2023, 3 (02):
  • [12] Host-Guest Interactions of Metal-Organic Framework Enable Highly Conductive Quasi-Solid-State Electrolytes for Li-CO2 Batteries
    Guan, De-Hui
    Wang, Xiao-Xue
    Miao, Cheng-Lin
    Li, Jia-Xin
    Li, Jian-You
    Yuan, Xin-Yuan
    Ma, Xin-Yue
    Xu, Ji-Jing
    ACS NANO, 2024, 18 (50) : 34299 - 34311
  • [13] Early-stage decomposition of solid polymer electrolytes in Li-metal batteries
    Andersson, Edvin K. W.
    Sangeland, Christofer
    Berggren, Elin
    Johansson, Fredrik O. L.
    Kuhn, Danilo
    Lindblad, Andreas
    Mindemark, Jonas
    Hahlin, Maria
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (39) : 22462 - 22471
  • [14] Rechargeable quasi-solid-state lithium air batteries
    Kim, Hyunjin
    Kim, Taeyoung
    Roev, Victor
    Kwon, Hyuk Jae
    Kwon, Soonchul
    Lee, Hyunpyo
    Im, Dongmin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [15] Integration of gel polymer electrolytes with dry electrodes for quasi-solid-state batteries
    Zhang, Yue
    Gou, Bin
    Li, Yuhang
    Liao, Yaqi
    Lu, Jingshan
    Wu, Lin
    Zhang, Wei
    Xu, Henghui
    Huang, Yunhui
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [16] Integration of gel polymer electrolytes with dry electrodes for quasi-solid-state batteries
    Zhang, Yue
    Gou, Bin
    Li, Yuhang
    Liao, Yaqi
    Lu, Jingshan
    Wu, Lin
    Zhang, Wei
    Xu, Henghui
    Huang, Yunhui
    Chemical Engineering Journal, 2024, 498
  • [17] Nonflammable and Stable Quasi-Solid Electrolytes: Demonstrating the Feasibility of Application in Rechargeable Solid-State Magnesium Batteries
    Seggem, Prabhakar
    Jetti, Vatsala Rani
    Basak, Pratyay
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06): : 6606 - 6617
  • [18] Coordination polymer-reinforced composite polymer electrolyte for all-solid-state Li-metal batteries
    Yuan, Jiaxi
    Dong, Hao
    Wang, Bin
    Qiu, Ming
    Liu, Zhendong
    Wu, Xiaojun
    Zhong, Sheng
    Tong, Gangsheng
    Chen, Zhenying
    Zhang, Jichao
    Zhang, Qing
    Zhu, Jinhui
    Zhuang, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [19] Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries
    Li, Zeyu
    Liu, Feng
    Chen, Shaoshan
    Zhai, Fei
    Li, Yu
    Feng, Yiyu
    Feng, Wei
    NANO ENERGY, 2021, 82
  • [20] Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries
    Suriyakumar, Shruti
    Gopi, Sivalingam
    Kathiresan, Murugavel
    Bose, Suriyasarathi
    Gowd, E. Bhoje
    Nair, Jijeesh R.
    Angulakshmi, Natarajan
    Meligrana, Giuseppina
    Bella, Federico
    Gerbaldi, Claudio
    Stephan, A. Manuel
    ELECTROCHIMICA ACTA, 2018, 285 : 355 - 364