A primal-dual active set strategy for non-linear multibody contact problems

被引:198
作者
Hüeber, S [1 ]
Wohlmuth, BI [1 ]
机构
[1] Univ Stuttgart, IANS, D-70569 Stuttgart, Germany
关键词
multibody contact problems; primal-dual active set strategy; mortar finite element methods; dual Lagrange multipliers; non-conforming meshes; linear elasticity;
D O I
10.1016/j.cma.2004.08.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-conforming domain decomposition methods provide a powerful tool for the numerical approximation of partial differential equations. For the discretization of a non-linear multibody contact problem, we use the mortar approach with a dual Lagrange multiplier space. To handle the non-linearity of the contact conditions, we apply a primal-dual active set strategy to find the actual contact zone. The algorithm can be easily generalized to multibody contact problems. A suitable basis transformation guarantees the same algebraic structure in the multibody situation as in the one body case. Using an inexact primal-dual active set strategy in combination with a multigrid method yields an efficient iterative solver. Different numerical examples for one and multibody contact problems illustrate the performance of the method. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:3147 / 3166
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1988, SIAM STUDIES APPL MA
[2]  
Bastian P., 1997, Computing and Visualization in Science, V1, P27, DOI 10.1007/s007910050003
[3]   Neumann-Dirichlet algorithm for unilateral contact problems: Convergence results [J].
Bayada, G ;
Sabil, J ;
Sassi, T .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) :381-386
[4]   Extension of the mortar finite element method to a variational inequality modeling unilateral contact [J].
Ben Belgacem, F ;
Hild, P ;
Laborde, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :287-303
[5]   Hybrid finite element methods for the Signorini problem [J].
Ben Belgacem, F ;
Renard, Y .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1117-1145
[6]   EXISTENCE, UNIQUENESS, AND REGULARITY RESULTS FOR THE 2-BODY CONTACT PROBLEM [J].
BOIERI, P ;
GASTALDI, F ;
KINDERLEHRER, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (03) :251-277
[7]   Adaptive finite elements for elastic bodies in contact [J].
Carstensen, C ;
Scherf, O ;
Wriggers, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1605-1626
[8]   Solution of contact problems by FETI domain decomposition with natural coarse space projections [J].
Dostál, Z ;
Neto, FAMG ;
Santos, SA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) :1611-1627
[9]   Scalability and FETI based algorithm for large discretized variational inequalities [J].
Dostál, Z ;
Horák, D .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 61 (3-6) :347-357
[10]  
Dostal Z., 1998, CONT MATH, V218, P82