AN EXACTLY COMPUTABLE LAGRANGE-GALERKIN SCHEME FOR THE NAVIER-STOKES EQUATIONS AND ITS ERROR ESTIMATES

被引:8
作者
Tabata, Masahisa [1 ]
Uchiumi, Shinya [2 ,3 ]
机构
[1] Waseda Univ, Dept Math, Shinjuku Ku, 3-4-1 Ohkubo, Tokyo 1698555, Japan
[2] Waseda Univ, Japan Soc Promot Sci, Shinjuku Ku, 3-4-1 Ohkubo, Tokyo 1698555, Japan
[3] Waseda Univ, Grad Sch Fundamental Sci & Engn, Shinjuku Ku, 3-4-1 Ohkubo, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
Lagrange-Galerkin scheme; finite element method; Navier-Stokes equations; exact computation; FINITE-ELEMENT SCHEME; CONVERGENCE; STABILITY; 2ND-ORDER; TIME; APPROXIMATION;
D O I
10.1090/mcom/3222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Lagrange-Galerkin scheme, which is computable exactly, for the Navier-Stokes equations and show its error estimates. In the Lagrange-Galerkin method we have to deal with the integration of composite functions, where it is difficult to get the exact value. In real computations, numerical quadrature is usually applied to the integration to obtain approximate values, that is, the scheme is not computable exactly. It is known that the error caused from the approximation may destroy the stability result that is proved under the exact integration. Here we introduce a locally linearized velocity and the backward Euler method in solving ordinary differential equations in the position of the fluid particle. Then, the scheme becomes computable exactly, and we show the stability and convergence for this scheme. For the P-2/P-1- and P-1+/P-1-finite elements optimal error estimates are proved in l(infinity)(H-1) x l(2)(L-2) norm for the velocity and pressure. We present some numerical results, which reflect these estimates and also show robust stability for high Reynolds numbers in the cavity flow problem.
引用
收藏
页码:39 / 67
页数:29
相关论文
共 31 条
[1]   Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations [J].
Achdou, Y ;
Guermond, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :799-826
[2]  
Arnold D. N., 1984, Calcolo, V21, P337, DOI 10.1007/BF02576171
[3]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[4]   MODIFIED LAGRANGE-GALERKIN METHODS TO INTEGRATE TIME DEPENDENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Bermejo, R. ;
Saavedra, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) :B779-B803
[5]   A SECOND ORDER IN TIME MODIFIED LAGRANGE-GALERKIN FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Bermejo, R. ;
Galan del Sastre, P. ;
Saavedra, L. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3084-3109
[6]  
Boukir K, 1997, INT J NUMER METH FL, V25, P1421, DOI 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO
[7]  
2-A
[8]  
Ciarlet P. G., 2002, CLASSICS APPL MATH, V40
[9]  
Ciarlet P.G., 2002, CLASSICS APPL MATH, V40
[10]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77