Singular Finsler Double Phase Problems with Nonlinear Boundary Condition

被引:15
作者
Farkas, Csaba [2 ]
Fiscella, Alessio [3 ]
Winkert, Patrick [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Sapientia Hungarian Univ Transylvania, Dept Math & Comp Sci, Targu Mures, Romania
[3] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Anisotropic Double Phase Operator; Critical Type Exponent; Existence Results; Minkowski Space; Nonlinear Boundary Condition; Singular Problems; POSITIVE SOLUTIONS; NEUMANN PROBLEMS; WULFF SHAPE; EXISTENCE; REGULARITY; EQUATIONS; MULTIPLICITY; EIGENVALUES; FUNCTIONALS; MINIMIZERS;
D O I
10.1515/ans-2021-2143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a singular Finsler double phase problem with a nonlinear boundary con-dition and perturbations that have a type of critical growth, even on the boundary. Based on variational methods in combination with truncation techniques, we prove the existence of at least one weak solution for this problem under very general assumptions. Even in the case when the Finsler manifold reduces to the Euclidean norm, our work is the first one dealing with a singular double phase problem and nonlinear bound-ary condition.
引用
收藏
页码:809 / 825
页数:17
相关论文
共 57 条
[1]   Double phase problems with variable growth and convection for the Baouendi-Grushin operator [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06)
[2]  
Bao D, 2000, GEOMETRY
[3]   Elliptic problems with convection terms in Orlicz spaces [J].
Barletta, Giuseppina ;
Tornatore, Elisabetta .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[7]   Borderline gradient continuity of minima [J].
Baroni, Paolo ;
Kuusi, Tuomo ;
Mingione, Giuseppe .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (02) :537-575
[8]  
Bellettini G., 1996, Hokkaido Math. J, V25, P537, DOI [10.14492/hokmj/1351516749, DOI 10.14492/HOKMJ/1351516749]
[9]   Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators [J].
Belloni, M ;
Ferone, V ;
Kawohl, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05) :771-783
[10]   REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS [J].
Byun, Sun-Sig ;
Oh, Jehan .
ANALYSIS & PDE, 2020, 13 (05) :1269-1300