On non-topological multivortex condensates in the generalized self-dual Chern-Simons theory

被引:0
作者
Suzuki, T [1 ]
Takahashi, F [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Suita, Osaka 565, Japan
来源
Recent Advances in Elliptic and Parabolic Problems | 2005年
关键词
D O I
10.1142/9789812702050_0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we sketch a method of construction of non-topological multivortex (periodic) condensates in the generalized self-dual Chern-Simons gauge theory. We propose a simple proof of the desired property of the linearized operator needed in the construction in use of classical abstract analysis.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 14 条
[1]   GENERALIZED SELF-DUAL CHERN-SIMONS VORTICES [J].
BURZLAFF, J ;
CHAKRABARTI, A ;
TCHRAKIAN, DH .
PHYSICS LETTERS B, 1992, 293 (1-2) :127-131
[2]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[3]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[4]   Non-topological solutions in the generalized self-dual Chern-Simons-Higgs theory [J].
Chae, D ;
Imanuvilov, OY .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 16 (01) :47-61
[5]   An analysis of the two-vortex case in the Chern-Simons Higgs model [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Wang, GF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (01) :87-97
[6]   Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Peng, XW ;
Wang, GF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (02) :383-407
[7]  
Gohberg IG., 1960, AM MATH SOC TRANSL, V2, P185
[8]   MULTIVORTEX SOLUTIONS OF THE ABELIAN CHERN-SIMONS-HIGGS THEORY [J].
HONG, JY ;
KIM, YB ;
PAC, PY .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2230-2233
[9]   SELF-DUAL CHERN-SIMONS VORTICES [J].
JACKIW, R ;
WEINBERG, EJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2234-2237
[10]  
JAFFE A, 1980, VORTICES MONOPOLES S