Highly selective oxidation of methane to formaldehyde on tungsten trioxide by lattice oxygen

被引:20
作者
Fan, Yingying [1 ]
Zhang, Peiyun [1 ]
Lu, Rongxia [1 ]
Jiang, Yuheng [2 ,3 ]
Pan, Guoliang [1 ]
Wang, Wei [1 ]
Zhu, Xianglian [1 ]
Wei, Shilei [1 ]
Han, Dongxue [1 ]
Niu, Li [1 ]
机构
[1] Guangzhou Univ, Ctr Adv Analyt Sci, Analyt & Testing Ctr, Sch Chem & Chem Engn,Guangzhou Key Lab Sensing Ma, Guangzhou 510006, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, Key Lab Nanosyst & Hierarchy Fabricat, Beijing 100190, Peoples R China
[3] Peking Univ, Ctr Nanochem, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane; Photocatalytic; Formaldehyde; Tungsten trioxide; CONVERSION; SURFACE; TIO2; WO3; O-2; ESR;
D O I
10.1016/j.catcom.2021.106365
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic oxidation of methane into formaldehyde in high yield and selectivity remains a grand challenge due to the ineluctable intermediates. Here, we report that a {001}, {010} and {100} facets modified tungsten trioxide photocatalyst enables an intermediate-free oxidation of methane into formaldehyde with 99.4% selectivity. A durable formaldehyde yield of 4.61 mmol g(-1) can be achieved after irradiation for 30 h. Mechanism studies disclose that surface defect and reactive lattice oxygen atom are crucial for the selectivity and productivity promotion. This work provides a valid paradigm for efficient conversion of methane to formaldehyde.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Photogenerated-carrier separation along edge dislocation of WO3 single-crystal nanoflower photoanode [J].
Bu, Yuyu ;
Ren, Jun ;
Zhang, Huawei ;
Yang, Dongjiang ;
Chen, Zhuoyuan ;
Ao, Jin-Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (18) :8604-8611
[2]   Size- and Shape-Controlled Conversion of Tungstate-Based Inorganic-Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas [J].
Chen, Deliang ;
Gao, Lian ;
Yasumori, Atsuo ;
Kuroda, Kazuyuki ;
Sugahara, Yoshiyuki .
SMALL, 2008, 4 (10) :1813-1822
[3]   Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane [J].
Chen, Sai ;
Zeng, Liang ;
Tian, Hao ;
Li, Xinyu ;
Gong, Jinlong .
ACS CATALYSIS, 2017, 7 (05) :3548-3559
[4]   Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate [J].
Fan, Yingying ;
Zhou, Wencai ;
Qiu, Xueying ;
Li, Hongdong ;
Jiang, Yuheng ;
Sun, Zhonghui ;
Han, Dongxue ;
Niu, Li ;
Tang, Zhiyong .
NATURE SUSTAINABILITY, 2021, 4 (06) :509-515
[5]   Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2 [J].
Feng, Ningdong ;
Lin, Huiwen ;
Song, Hui ;
Yang, Longxiao ;
Tang, Daiming ;
Deng, Feng ;
Ye, Jinhua .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]  
Franz A.W., 2016, Formaldehyde. Ullmann's Encyclopedia of Industrial Chemistry, DOI [DOI 10.1002/14356007.A11619.PUB2, 10.1002/14356007.a11_619.pub2, DOI 10.1002/14356007.A11_619.PUB2]
[7]   Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism [J].
Gao, Liping ;
Ren, Fumin ;
Cheng, Zhixuan ;
Zhang, Yuan ;
Xiang, Qun ;
Xu, Jiaqiang .
CRYSTENGCOMM, 2015, 17 (17) :3268-3276
[8]   Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface:: Molecular and dissociative channels [J].
Henderson, MA ;
Epling, WS ;
Perkins, CL ;
Peden, CHF ;
Diebold, U .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (25) :5328-5337
[9]  
Kim HS, 2017, NAT MATER, V16, P454, DOI [10.1038/NMAT4810, 10.1038/nmat4810]
[10]   Electrochemical water oxidation on WO3 surfaces: A density functional theory study [J].
Kishore, Ravi ;
Cao, Xi ;
Zhang, Xueqing ;
Bieberle-Hutter, Anja .
CATALYSIS TODAY, 2019, 321 :94-99