A Novel Reconstruction Approach Combining Global and Local Low-rank Constraints for Undersampled Dynamic MRI

被引:0
作者
Xi, Changfeng [1 ]
Tao, Jinxu [1 ]
Qiu, Bensheng [2 ]
Ye, Zhongfu [1 ]
Xu, Jinzhang [3 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230027, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic MRI; correlation; similar patches; low-rank constraint; non-convex function; image reconstruction; LINEAR INVERSE PROBLEMS; THRESHOLDING ALGORITHM; IMAGE-RECONSTRUCTION; NONLOCAL REGULARIZATION; SPARSE REPRESENTATION; MINIMIZATION; FRAMEWORK; OPTIMIZATION; SEPARATION; FOCUSS;
D O I
10.2174/1573405613666170407154317
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Dynamic Magnetic Resonance Imaging (MRI) can be used to diagnose organs' motion, so it is useful and has been used widely. Reconstructing dynamic MRI from undersampled measurements can accelerate the imaging speed, this has attracted the attention of many researchers. For dynamic MRI, there is much global and local correlation in spatial and temporal dimensions, and if the spatial and temporal redundancy can be utilized efficiently in the reconstruction process, higher spatial and temporal resolutions can be achieved. Methods: In this paper, we propose a novel reconstruction method which utilizes the redundancy in spatial and temporal domains jointly. In particular, a 2-D matrix is obtained by vectorizing the images of every frame of a 3-D dynamic MRI sequence, and we extract overlapping 2-D patches from this matrix. Similar patches will be searched from these 2-D patches, and a non-convex function is used to approximate the low-rank matrices formed by these similar patches. At the present stage, only local correlation in the temporal dimension is employed. Discussion: To obtain better image quality, the global correlation in the temporal dimension is utilized by a low-rank penalty which is relaxed by the nuclear norm. Conclusion: We validate the proposed algorithm by using retrospectively undersampled in vivo cardiac datasets, and the proposed algorithm shows superior reconstruction performance compared to existing state-of-the-art methods such as k-t FOCUSS , k-t SLR, and L+S.
引用
收藏
页码:732 / 743
页数:12
相关论文
共 47 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]  
Brinegar C, 2008, C P IEEE ENG MED BIO, V3, P381
[5]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[6]   Image Denoising Methods. A New Nonlocal Principle [J].
Buades, A. ;
Coll, B. ;
Morel, J. M. .
SIAM REVIEW, 2010, 52 (01) :113-147
[7]   Dictionary Learning and Time Sparsity for Dynamic MR Data Reconstruction [J].
Caballero, Jose ;
Price, Anthony N. ;
Rueckert, Daniel ;
Hajnal, Joseph V. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :979-994
[8]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[9]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[10]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)