Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids

被引:29
|
作者
Lagger, Hanna G. [1 ,2 ]
Breinlinger, Thomas [1 ]
Korvink, Jan G. [3 ]
Moseler, Michael [1 ,2 ]
Di Renzo, Alberto [4 ]
Di Maio, Francesco [4 ]
Bierwisch, Claas [1 ]
机构
[1] Fraunhofer IWM, D-79108 Freiburg, Germany
[2] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[3] Univ Freiburg, Lab Simulat, IMTEK Inst Microsyst Technol, D-79110 Freiburg, Germany
[4] Univ Calabria, Dept Environm & Chem Engn, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Discrete element method; Smoothed particle hydrodynamics; Magnetorheological fluid; Shear stress; Numerical simulation; Drag model; YIELD-STRESS; FLOW; SUSPENSIONS; EVOLUTION; GAS; DEM; ER;
D O I
10.1016/j.jnnfm.2015.01.010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Simulations of magnetorheological fluids are performed with different models for the hydrodynamic drag law. The shear stress predictions from two coupled discrete element - smoothed particle hydrodynamics models with different drag laws are compared to pure discrete element simulations for a wide range of Mason numbers. The discrete element model has a higher computational efficiency but the treatment of the hydrodynamic drag force involves some rough approximations. Based on the results of this study, a criterion is proposed for the applicability of the pure discrete element model in the simulation of sheared magnetorheological suspensions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 50 条
  • [1] Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids (vol 218, pg 16, 2015)
    Lagger, Hanna G.
    Breinlinger, Thomas
    Korvink, Jan G.
    Moseler, Michael
    Di Renzo, Alberto
    Di Maio, Francesco
    Bierwisch, Claas
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 223 : 257 - 257
  • [2] Yield shear-stress model of magnetorheological fluids
    Li, HT
    Peng, XH
    Chen, WM
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2005, 18 (04) : 505 - 509
  • [3] Yield shear stress model of magnetorheological fluids based on exponential distribution
    Guo, Chu-wen
    Chen, Fei
    Meng, Qing-rui
    Dong, Zi-xin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 360 : 174 - 177
  • [4] A shear stress model of water-based magnetorheological polishing fluids
    Ma, Zongqiao
    Cao, Jianguo
    Xu, Xianghua
    Xu, Jinhuan
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2022, 33 (01) : 160 - 169
  • [5] Study on shear stress model of magnetorheological fluids with distance weighted factors
    Ma, Liang
    Song, Wanli
    Wang, Rensheng
    Xiu, Shichao
    SMART MATERIALS AND STRUCTURES, 2017, 26 (06)
  • [6] A New Theoretical Model about Shear Stress in Magnetorheological Fluids with Small Shear Deformation
    祝长春
    JournalofWuhanUniversityofTechnology-MaterialsScience, 2005, (01) : 52 - 56
  • [7] A new theoretical model about shear stress in magnetorheological fluids with small shear deformation
    Zhu Changchun
    Zhai Pengcheng
    Liu Lisheng
    Zhang Qingjie
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2005, 20 (1): : 52 - 56
  • [8] A new theoretical model about shear stress in magnetorheological fluids with small shear deformation
    Zhu, CC
    Zhai, PC
    Liu, LS
    Zhang, QJ
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2005, 20 (01): : 52 - 56
  • [9] Enhance the yield shear stress of magnetorheological fluids
    Tang, X
    Zhang, X
    Tao, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (6-7): : 549 - 556
  • [10] Experimental Study on Shear stress of Magnetorheological Fluids
    Xiao, Linjing
    Gong, Xubo
    Chi, Yurong
    Wang, Chuanping
    Fan, Yamin
    Wei, Jie
    Zhu, Xuli
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY, 2016, 60 : 156 - 159