Geometric and monotonic properties of hyper-Bessel functions

被引:16
|
作者
Aktas, Ibrahim [1 ]
Baricz, Arpad [2 ,3 ]
Singh, Sanjeev [4 ]
机构
[1] Gumushane Univ, Dept Engn Math, Fac Engn & Nat Sci, Gumushane, Turkey
[2] Babes Bolyai Univ, Dept Econ, Cluj Napoca, Romania
[3] Obuda Univ, Inst Appl Math, Budapest, Hungary
[4] Indian Inst Technol Indore, Discipline Math, Indore, India
来源
RAMANUJAN JOURNAL | 2020年 / 51卷 / 02期
关键词
Starlike; Convex and uniformly convex functions; Radius of starlikeness; Convexity and uniform convexity; Hyper-Bessel functions; Zeros of hyper-Bessel functions; Laguerre-Polya class of entire functions; CONVEXITY; STARLIKENESS; RADIUS; INEQUALITIES; BOUNDS;
D O I
10.1007/s11139-018-0105-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some geometric properties of a normalized hyper-Bessel functions are investigated. Especially we focus on the radii of starlikeness, convexity, and uniform convexity of hyper-Bessel functions and we show that the obtained radii satisfy some transcendental equations. In addition, we give some bounds for the first positive zero of normalized hyper-Bessel functions, Redheffer-type inequalities, and bounds for this function. In this study we take advantage of Euler-Rayleigh inequalities and Laguerre-Polya class of real entire functions, intensively.
引用
收藏
页码:275 / 295
页数:21
相关论文
共 50 条
  • [1] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    The Ramanujan Journal, 2020, 51 : 275 - 295
  • [2] On Geometric Properties of Normalized Hyper-Bessel Functions
    Ahmad, Khurshid
    Mustafa, Saima
    Din, Muhey U.
    Rehman, Shafiq Ur
    Raza, Mohsan
    Arif, Muhammad
    MATHEMATICS, 2019, 7 (04)
  • [3] Certain Geometric Properties of Lommel and Hyper-Bessel Functions
    Mushtaq, Saima
    Raza, Mohsan
    Din, Muhey U.
    MATHEMATICS, 2019, 7 (03)
  • [4] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [5] CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION
    Aktas, Ibrahim
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 179 - 186
  • [6] A family of hyper-Bessel functions and convergent series in them
    Jordanka Paneva-Konovska
    Fractional Calculus and Applied Analysis, 2014, 17 : 1001 - 1015
  • [7] A family of hyper-Bessel functions and convergent series in them
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1001 - 1015
  • [8] On the zeros of the hyper-Bessel function
    Chaggara, H.
    Ben Romdhane, N.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (02) : 96 - 101
  • [9] Minimal cyclic random motion in Rn and hyper-Bessel functions
    Lachal, A.
    Leorato, S.
    Orsingher, E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (06): : 753 - 772
  • [10] GENERALIZED POISSON TRANSMUTATIONS AND CORRESPONDING REPRESENTATIONS OF HYPER-BESSEL FUNCTIONS
    DIMOVSKI, IH
    KIRYAKOVA, VS
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1986, 39 (10): : 29 - 32