On the structure of the fiber cone of ideals with analytic spread one

被引:10
作者
Benitez, Teresa Cortadellas [1 ]
Armengou, Santiago Zarzuela [1 ]
机构
[1] Univ Barcelona, Dept Algebra & Geometry, E-08007 Barcelona, Spain
关键词
fiber cone; Cohen-Macaulay; Buchsbaum; Gorenstein; multiplicity; Castelnuovo-Mumford regularity;
D O I
10.1016/j.jalgebra.2007.02.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given a local ring (A, m), we study the fiber cone of ideals in A with analytic spread one. In this case, the fiber cone has a structure as a module over its Noether normalization which is a polynomial ring in one variable over the residue field. One may then apply the structure theorem for modules over a principal domain to get a complete description of the fiber cone as a module. We analyze this structure in order to study and characterize in terms of the ideal itself the arithmetical properties and other numerical invariants of the fiber cone as multiplicity, reduction number or Castelnuovo-Mumford regularity. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:759 / 785
页数:27
相关论文
共 39 条
[1]   On certain algebras of reduction number one [J].
Barile, M ;
Morales, M .
JOURNAL OF ALGEBRA, 1998, 206 (01) :113-128
[2]  
Bruns Win-Fried, 1998, CAMBRIDGE STUD ADV M, V39
[3]  
Caviglia G, 2006, LECT NOTES PURE APPL, V244, P1
[4]   Multiplicity of the special fiber of blowups [J].
Corso, A ;
Polini, C ;
Vasconcelos, WV .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :207-219
[5]   Cohen-Macaulayness of special fiber rings [J].
Corso, A ;
Ghezzi, L ;
Polini, C ;
Ulrich, B .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) :3713-3734
[6]   Fiber cones with almost maximal depth [J].
Cortadellas, T .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (03) :953-963
[7]   On the depth of the fiber cone of filtrations [J].
Cortadellas, T ;
Zarzuela, S .
JOURNAL OF ALGEBRA, 1997, 198 (02) :428-445
[8]  
CORTADELLAS T, 1999, COMMUTATIVE ALGEBRA, P215
[9]  
D'Anna M, 2001, LECT NOTES PURE APPL, V220, P155
[10]   Invariants of ideals having principal reductions [J].
D'Anna, M ;
Guerrieri, A ;
Heinzer, W .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) :889-906