Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro

被引:130
作者
Yamawaki, N. [1 ]
Stanford, I. M. [1 ]
Hall, S. D. [1 ]
Woodhall, G. L. [1 ]
机构
[1] Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England
关键词
basal ganglia; layer; 5; interneuron network; deep brain stimulation;
D O I
10.1016/j.neuroscience.2007.10.021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:386 / 395
页数:10
相关论文
共 54 条
[1]   Alpha and beta oscillatory activity during a sequence of two movements [J].
Alegre, M ;
de Gurtubay, IG ;
Labarga, A ;
Iriarte, J ;
Malanda, A ;
Artieda, J .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (01) :124-130
[2]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[3]  
Boddeke HWGM, 1997, NEUROSCIENCE, V76, P653
[5]   Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease [J].
Brown, P ;
Mazzone, P ;
Oliviero, A ;
Altibrandi, MG ;
Pilato, F ;
Tonali, PA ;
Di Lazzaro, V .
EXPERIMENTAL NEUROLOGY, 2004, 188 (02) :480-490
[6]   What do the basal ganglia do? [J].
Brown, P ;
Marsden, CD .
LANCET, 1998, 351 (9118) :1801-1804
[7]   Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease [J].
Brown, P ;
Oliviero, A ;
Mazzone, P ;
Insola, A ;
Tonali, P ;
Di Lazzaro, V .
JOURNAL OF NEUROSCIENCE, 2001, 21 (03) :1033-1038
[8]   Cortical correlate of the piper rhythm in humans [J].
Brown, P ;
Salenius, S ;
Rothwell, JC ;
Hari, R .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (06) :2911-2917
[9]   Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro [J].
Buhl, EH ;
Tamás, G ;
Fisahn, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 513 (01) :117-126
[10]   Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man [J].
Conway, BA ;
Halliday, DM ;
Farmer, SF ;
Shahani, U ;
Maas, P ;
Weir, AI ;
Rosenberg, JR .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 489 (03) :917-924