Equicontinuity of a graph map

被引:9
作者
Sun, TX [1 ]
Zhang, YP [1 ]
Zhang, XY [1 ]
机构
[1] Guangxi Univ, Dept Math, Nanning 530004, Guangxi, Peoples R China
关键词
D O I
10.1017/S0004972700038016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph, and f : G -> G be a continuous map with periodic points. In this paper we show that the following five statements are equivalent. (1) f is equicontinuous. (2) There exists some positive integer N such that f N is uniformly convergent. (3) f is S-equicontinuous for some positive integer sequence S = {n(1) < n(2) < (...)}. (4) Omega(x,f) =w(x,f) for every x epsilon G. (5) sigma : (lim) under left arrow {X, f} -> (lim) under left arrow {X, f} is a periodic map.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 13 条
[1]  
Akin E, 1996, OHIO ST U M, V5, P25
[2]   LINEAR-ORDERINGS AND THE FULL PERIODICITY KERNEL FOR THE N-STAR [J].
ALSEDA, L ;
MORENO, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) :599-616
[3]   Topological complexity [J].
Blanchard, F ;
Host, B ;
Maass, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :641-662
[4]   THE SET OF ALL ITERATES IS NOWHERE DENSE IN C([0, 1], [0, 1]) [J].
BLOKH, AM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (02) :787-798
[6]  
BRUCKNER AM, 1990, TAMKANG J MATH, V21, P287
[8]   The structure of equicontinuous maps [J].
Mai, JH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :4125-4136
[9]  
NADLER SB, 1992, CONTINUUM THEORY PUR, V158
[10]  
Qiao, 2001, SE ASIAN B MATH, V25, P413