Lower bounds for the Laplacian spectral radius of graphs

被引:2
作者
Afshari, B.
Saadati, M. T.
Saadati, R.
机构
关键词
Laplacian matrix; Laplacian spectral radius; EIGENVALUES;
D O I
10.1016/j.laa.2021.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph of order nand with the Laplacian spectral radius lambda(G). For v(i) is an element of V, denote the set of all neighbors of viby Niand its number by d(i). The maximum degree of G is denoted by Delta(G). It is shown that if G is connected and Delta(G) < n - 1 then lambda(G) >= max {m(i)' + (1 + (m(i)' - 1)(2)/d(2,i) ) d(i)/m(i)' : v(i) is an element of V}, where m(i)'= Sigma(vivj is an element of E)(d(j)-vertical bar N-i boolean AND N-j vertical bar) d(i) and d(2,i) is the number of vertices at distance two from v(i). Also it is shown that lambda(G) >= max {(p(ij) + (1 - p(ij))(2)/p(ij) max{1, d(i) - 1}) x vertical bar N-i boolean OR N-j vertical bar : v(i)v(j) is an element of E, d(i) >= d(j)}, where p(ij)= e(N-i,N-j-N-i)/d(i)(vertical bar N-i boolean OR N-j vertical bar-d(i)), e(N-i, N-j-N-i) is the number of edges between N-i and N-j - N-i. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 10 条
[1]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[2]   The largest two Laplacian eigenvalues of a graph [J].
Das, KC .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06) :441-460
[3]   An improved upper bound for Laplacian graph eigenvalues [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 :269-278
[4]   A new upper bound for the Laplacian spectral radius of graphs [J].
Guo, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 :61-66
[5]  
Horn R. A., 1990, MATRIX ANAL
[6]   Lower bounds of the Laplacian spectrum of graphs based on diameter [J].
Lu, Mei ;
Zhang, Lian-zhu ;
Tian, Feng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) :400-406
[7]   LAPLACE EIGENVALUES OF GRAPHS - A SURVEY [J].
MOHAR, B .
DISCRETE MATHEMATICS, 1992, 109 (1-3) :171-183
[8]   Bounds on graph eigenvalues I [J].
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) :667-671
[9]   On the spectral radius of graphs [J].
Yu, AM ;
Lu, M ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :41-49
[10]  
Zhang X., 2002, Australas J Comb, V26, P33