A connection between Szego-Lobatto and quasi Gauss-type quadrature formulas

被引:3
作者
Cruz-Barroso, Ruyman [1 ]
Diaz Mendoza, Carlos [1 ]
Perdomo-Pio, Francisco [1 ]
机构
[1] Univ La Laguna, Dept Math Anal, Tenerife 38271, Canary Islands, Spain
关键词
Szego-Lobatto quadrature formulas; Gauss; Radau and Lobatto quadrature formulas; Prescribed nodes; Szego polynomials; Para-orthogonal polynomials; UNIT-CIRCLE; PRESCRIBED NODES; MAXIMAL DOMAIN; POLYNOMIALS; VALIDITY; RULES;
D O I
10.1016/j.cam.2014.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain new results on positive quadrature formulas with prescribed nodes for the approximation of integrals with respect to a positive measure supported on the unit circle. We revise Szego-Lobatto rules and we present a characterization of their existence. In particular, when the measure on the unit circle is symmetric, this characterization can be used to recover, in a more elementary way, a recent characterization result for the existence of positive quasi Gauss, quasi Radau and quasi Lobatto rules (quasi Gauss-type), due to B. Beckermann et. al. Some illustrative numerical examples are finally carried out in order to show the powerfulness of our results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 18 条
  • [1] Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa
    Beckermann, Bernhard
    Bustamante, Jorge
    Martinez-Cruz, Reinaldo
    Quesada, Jose M.
    [J]. CALCOLO, 2014, 51 (02) : 319 - 328
  • [2] Rational quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity
    Bultheel, A.
    Gonzalez-Vera, P.
    Hendriksen, E.
    Njastad, O.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 940 - 963
  • [3] A connection between quadrature formulas on the unit circle and the interval [-1,1]
    Bultheel, A
    Daruis, L
    González-Vera, P
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (01) : 1 - 14
  • [4] On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line (vol 47, pg 21, 2010)
    Bultheel, Adhemar
    Cruz-Barroso, Ruyman
    Van Barel, Marc
    [J]. CALCOLO, 2013, 50 (02) : 163 - 164
  • [5] Computation of rational Szego-Lobatto quadrature formulas
    Bultheel, Adhemar
    Gonzalez-Vera, Pablo
    Hendriksen, Erik
    Njastad, Olav
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) : 1251 - 1263
  • [6] On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line
    Bultheel, Adhemar
    Cruz-Barroso, Ruyman
    Van Barel, Marc
    [J]. CALCOLO, 2010, 47 (01) : 21 - 48
  • [7] Quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity
    Bultheel, Adhemar
    Daruis, Leyla
    Gonzalez-Vera, Pablo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) : 948 - 963
  • [8] Cantero M.J., 2002, E J APPROX, V8, P447
  • [9] Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle
    Cruz-Barroso, Ruyman
    Daruis, Leyla
    Gonzalez-Vera, Pablo
    Njastad, Olav
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 424 - 440
  • [10] Rational approximants associated with measures supported on the unit circle and the real line
    Cruz-Barroso, Ruyman
    Gonzalez-Vera, Pablo
    Perdomo-Pio, Francisco
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (01) : 107 - 117