Mixed Virtual Elements for discrete fracture network simulations

被引:26
作者
Fernando Benedetto, Matias [1 ,2 ]
Borio, Andrea [3 ]
Scialo, Stefano [3 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, INTECIN, Grp LMNI, Buenos Aires, DF, Argentina
[3] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Mixed Virtual Elements; Discrete Fracture Networks; Mixed formulation; Fracture flows; Darcy flows; TRANSIENT DARCY FLOW; HYBRID MORTAR METHOD; STEADY-STATE METHOD; SOLVING FLOW; OPTIMIZATION APPROACH; POROUS-MEDIA; PATCH TEST; FORMULATION; TRANSPORT; MODEL;
D O I
10.1016/j.finel.2017.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work deals with the simulation of the flow in Discrete Fracture Networks (DFN), using the mixed formulation of the Virtual Element Method (VEM) on polygonal conforming meshes. The flexibility of the VEM in handling polygonal meshes is used to easily generate a conforming mesh even in the case of intricate DFNs. Mixed Virtual Elements of arbitrary polynomial accuracy are then used for the discretization of the velocity field. The well posedness of the resulting discrete problem is shown. Numerical results on simple problems are proposed to show convergence properties of the method with respect to known analytic solutions, whereas some tests on fairly complex networks are also reported showing its applicability and effectiveness.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
[1]  
Al-Hinai O., 2015, SPE RES SIM S SOC PE
[2]  
[Anonymous], 2015, SPE RES SIM S 23 25
[3]   MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA [J].
Antonietti, Paola F. ;
Formaggia, Luca ;
Scotti, Anna ;
Verani, Marco ;
Verzott, Nicola .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03) :809-832
[4]   Mixed finite element methods on nonmatching multiblock grids [J].
Arbogast, T ;
Cowsar, LC ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1295-1315
[5]   The Babuska-Brezzi condition and the patch test: An example [J].
Babuska, I ;
Narasimhan, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 140 (1-2) :183-199
[6]  
Beirao da Veiga L., 2015, MATH MOD METH APPL S, V26, P729, DOI DOI 10.1142/S0218202516500160
[7]   Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems [J].
Benedetto, M. F. ;
Berrone, S. ;
Borio, A. ;
Pieraccini, S. ;
Scialo, S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 :18-40
[8]   A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Scialo, Stefano .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 109 :23-36
[9]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[10]   Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method [J].
Berrone, S. ;
Borio, A. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 129 :14-31