Distribution of the spectrum of a singular positive Sturm-Liouville operator perturbed by the Dirac delta function

被引:3
作者
Pechentsov, A. S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
关键词
TRACE FORMULA; EIGENFUNCTIONS; EIGENVALUES; POTENTIALS;
D O I
10.1134/S0012266117080079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Sturm-Liouville operator generated in the space L (2)[0,+a) by the expression l (a,b):= -d (2)/dx (2) +x+a delta(x-b) and the boundary condition y(0) = 0. We prove that the eigenvalues lambda (n) of this operator satisfy the inequalities lambda(1) (0) < lambda(1) < lambda(2) (0) and lambda(n) (0) ae<currency> lambda(n) < lambda(n+1) (0), n = 2, 3,..., where {-lambda(n) (0)} is the sequence of zeros of the Airy function Ai (lambda). We find the asymptotics of lambda(n) as n -> +a depending on the parameters a and b.
引用
收藏
页码:1029 / 1034
页数:6
相关论文
共 8 条