almaBTE: A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

被引:228
作者
Carrete, Jesus [1 ,2 ,3 ]
Vermeersch, Bjorn [1 ,2 ]
Katre, Ankita [1 ,2 ]
van Roekeghem, Ambroise [1 ,2 ]
Wang, Tao [4 ]
Madsen, Georg K. H. [3 ]
Mingo, Natalio [1 ,2 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA Grenoble, LITEN, 17 Rue Martyrs, F-38054 Grenoble, France
[3] TU Wien, Inst Mat Chem, A-1060 Vienna, Austria
[4] Ruhr Univ Bochum, ICAMS, CMAT, D-44780 Bochum, Germany
关键词
Boltzmann transport equation; Thermal conductivity; Phonon; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; PLANE; SCATTERING; MODEL;
D O I
10.1016/j.cpc.2017.06.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm-mu m range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title: almaBTE Program Files doi: http://dx.doLorg/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 54 条
[1]  
[Anonymous], 1997, HIER DAT FORM VERS 5
[2]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[3]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[4]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[5]   Low thermal conductivity and triaxial phononic anisotropy of SnSe [J].
Carrete, Jesus ;
Mingo, Natalio ;
Curtarolo, Stefano .
APPLIED PHYSICS LETTERS, 2014, 105 (10)
[6]   Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling [J].
Carrete, Jesus ;
Li, Wu ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
PHYSICAL REVIEW X, 2014, 4 (01)
[7]   Role of Surface-Segregation-Driven Intermixing on the Thermal Transport through Planar Si/Ge Superlattices [J].
Chen, Peixuan ;
Katcho, N. A. ;
Feser, J. P. ;
Li, Wu ;
Glaser, M. ;
Schmidt, O. G. ;
Cahill, David G. ;
Mingo, N. ;
Rastelli, A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)
[8]   Phonon Transport Simulator (PhonTS) [J].
Chernatynskiy, Aleksandr ;
Phillpot, Simon R. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 192 :196-204
[9]   On the bulk β-Ga2O3 single crystals grown by the Czochralski method [J].
Galazka, Zbigniew ;
Irmscher, Klaus ;
Uecker, Reinhard ;
Bertram, Rainer ;
Pietsch, Mike ;
Kwasniewski, Albert ;
Naumann, Martin ;
Schulz, Tobias ;
Schewski, Robert ;
Klimm, Detlef ;
Bickermann, Matthias .
JOURNAL OF CRYSTAL GROWTH, 2014, 404 :184-191
[10]   CRYSTAL STRUCTURE OF BETA-GA2O3 [J].
GELLER, S .
JOURNAL OF CHEMICAL PHYSICS, 1960, 33 (03) :676-684