New existence theorems of positive solutions for Sturm-Liouville boundary value problems

被引:0
作者
Ge, WG [1 ]
Ren, JL [1 ]
机构
[1] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
关键词
boundary value problem; positive solution; operator; cone;
D O I
10.1016/S0096-3003(03)00921-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing available operators some new existence theorems of positive solutions are obtained for the Sturm-Liouville boundary value problem {(p(t)u'(t))' + lambdaa(t)f (t, u(t)) = 0, alpha(1)u(0) - beta(1)p(0)u'(0) = 0, alpha(2)u(1) + beta(2)p(1)u'(1) = 0}, where a(t) greater than or equal to 0 and lambda > 0 is a parameter. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 644
页数:14
相关论文
共 4 条
[1]   The existence of positive solutions for the Sturm-Liouville boundary value problems [J].
Agarwal, RP ;
Hong, HL ;
Yeh, CC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (09) :89-96
[2]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[3]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[4]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations