Packing circles in the smallest circle: an adaptive hybrid algorithm

被引:17
作者
Al-Mudahka, I. [2 ]
Hifi, M. [1 ]
M'Hallah, R. [2 ]
机构
[1] UPJV Amiens, MIS, F-8000 Amiens, France
[2] Kuwait Univ, Safat 13060, Kuwait
关键词
heuristics; tabu search; non-linear programming; circular packing; nested partitioning; GLOBAL OPTIMIZATION; SEARCH ALGORITHM; UNEQUAL CIRCLES; LARGER; DESIGN; MODEL;
D O I
10.1057/jors.2010.157
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The circular packing problem (CPP) consists of packing n circles C-i of known radii r(i), i is an element of N = {1, ..., n}, into the smallest containing circle C. The objective is to determine the coordinates (x(i), y(i)) of the centre of C-i, i is an element of N, as well as the radius r and centre (x,y) of C. CPP, which is a variant of the two-dimensional open-dimension problem, is NP hard. This paper presents an adaptive algorithm that incorporates nested partitioning within a tabu search and applies some diversification strategies to obtain a (near) global optimum. The tabu search is to identify the n circles' ordering, whereas the nested partitioning is to determine the n circles' positions that yield the smallest r. The computational results show the efficiency of the proposed algorithm. Journal of the Operational Research Society (2011) 62, 1917-1930. doi:10.1057/jors.2010.157 Published online 24 November 2010
引用
收藏
页码:1917 / 1930
页数:14
相关论文
共 46 条
[1]   Efficiently packing unequal disks in a circle [J].
Addis, Bernardetta ;
Locatelli, Marco ;
Schoen, Fabio .
OPERATIONS RESEARCH LETTERS, 2008, 36 (01) :37-42
[2]   A beam search algorithm for the circular packing problem [J].
Akeb, Hakim ;
Hifi, Mhand ;
M'Hallah, Rym .
COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (05) :1513-1528
[3]  
[Anonymous], MATH ED RES
[4]   Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming [J].
Anstreicher, Kurt M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) :471-484
[5]   The packing of circles on a hemisphere [J].
Appelbaum, J ;
Weiss, Y .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1999, 10 (11) :1015-1019
[6]   On the shapes of natural sand grains [J].
Barclay, David R. ;
Buckingham, Michael J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2009, 114
[7]   Minimizing the object dimensions in circle and sphere packing problems [J].
Birgin, E. G. ;
Sobral, F. N. C. .
COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (07) :2357-2375
[8]   New and improved results for packing identical unitary radius circles within triangles, rectangles and strips [J].
Birgin, Ernesto G. ;
Gentil, Jan M. .
COMPUTERS & OPERATIONS RESEARCH, 2010, 37 (07) :1318-1327
[9]   Irreducible Apollonian Configurations and Packings [J].
Butler, Steve ;
Graham, Ron ;
Guettler, Gerhard ;
Mallows, Colin .
DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (03) :487-507
[10]   Dissimilarity measures for population-based global optimization algorithms [J].
Cassioli, Andrea ;
Locatelli, Marco ;
Schoen, Fabio .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (02) :257-281