Different scenarios for survival analysis of evolutionary algorithms

被引:0
作者
Santana, Roberto [1 ]
Lozano, Jose A. [1 ,2 ]
机构
[1] Univ Basque Country, UPV EHU, Bilbao, Spain
[2] Basque Ctr Appl Math BCAM, Bilbao, Spain
来源
PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17) | 2017年
关键词
evolutionary algorithms; survival analysis; experimental framework; PERFORMANCE;
D O I
10.1145/3071178.3071250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Empirical analysis of evolutionary algorithms (EAs) behavior is usually approached by computing relatively simple descriptive statistics like mean fitness and mean number of evaluations to convergence, or more theoretically sound statistical tests for finding significant differences between algorithms. However, these analyses do not consider situations where the EA failed to finish due to numerical errors or excessive computational time. Furthermore, the ability of an EA to continuously make search improvements is usually overlooked. In this paper we propose the use of the theory from survival analysis for empirically investigating the behavior of EAs, even in situations where not all the experiments finish in a reasonable time. We introduce two scenarios for the application of survival analysis in EAs. Survival trees, a machine learning technique adapted to the survival analysis scenario, are applied to automatically identify combinations of EA parameters with similar effect in the behavior of the algorithm.
引用
收藏
页码:825 / 832
页数:8
相关论文
共 50 条
  • [31] Green Evolutionary Algorithms and Java']JavaScript: A Study on Different Software and Hardware Architectures
    Merelo-Guervos, Juan J.
    Garcia-Valdez, Mario
    Castillo, Pedro A.
    SOFTWARE TECHNOLOGIES, ICSOFT 2023, 2024, 2104 : 1 - 18
  • [32] Parallel evolutionary algorithms
    Sihn, W
    Graupner, TD
    Asal, M
    MODELLING AND SIMULATION 2002, 2002, : 172 - 175
  • [33] The property analysis of evolutionary algorithms applied to spanning tree problems
    Sang-Moon Soak
    Moongu Jeon
    Applied Intelligence, 2010, 32 : 96 - 121
  • [34] The property analysis of evolutionary algorithms applied to spanning tree problems
    Soak, Sang-Moon
    Jeon, Moongu
    APPLIED INTELLIGENCE, 2010, 32 (01) : 96 - 121
  • [35] Sensitivity Analysis in the Optimal Sizing of Analog ICs by Evolutionary Algorithms
    Guerra-Gomez, I.
    Tlelo-Cuautle, E.
    Gerardo de la Fraga, L.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3161 - 3165
  • [36] Comparative analysis of various Evolutionary Algorithms: Past three decades
    Srikumar, A.
    Pande, Sagar Dhanraj
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2024, 11 (04):
  • [37] ON ACCELERATION OF EVOLUTIONARY ALGORITHMS TAKING ADVANTAGE OF A POSTERIORI ERROR ANALYSIS
    Orkisz, Janusz
    Glowacki, Maciej
    COMPUTING AND INFORMATICS, 2014, 33 (01) : 154 - 174
  • [38] Analysis of Baseline Evolutionary Algorithms for the Packing While Travelling Problem
    Roostapour, Vahid
    Pourhassan, Mojgan
    Neumann, Frank
    FOGA'19: PROCEEDINGS OF THE 15TH ACM/SIGEVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2019, : 124 - 132
  • [39] Different Evolutionary Trends of Galloanseres: Mitogenomics Analysis
    Zhou, Shengyang
    Wang, Xibao
    Wang, Lidong
    Gao, Xiaodong
    Lyu, Tianshu
    Xia, Tian
    Shi, Lupeng
    Dong, Yuehuan
    Mei, Xuesong
    Zhang, Zhihao
    Zhang, Honghai
    ANIMALS, 2024, 14 (10):
  • [40] The analysis of evolutionary algorithms - A proof that crossover really can help
    Jansen, T
    Wegener, I
    ALGORITHMICA, 2002, 34 (01) : 47 - 66