Different scenarios for survival analysis of evolutionary algorithms

被引:0
作者
Santana, Roberto [1 ]
Lozano, Jose A. [1 ,2 ]
机构
[1] Univ Basque Country, UPV EHU, Bilbao, Spain
[2] Basque Ctr Appl Math BCAM, Bilbao, Spain
来源
PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17) | 2017年
关键词
evolutionary algorithms; survival analysis; experimental framework; PERFORMANCE;
D O I
10.1145/3071178.3071250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Empirical analysis of evolutionary algorithms (EAs) behavior is usually approached by computing relatively simple descriptive statistics like mean fitness and mean number of evaluations to convergence, or more theoretically sound statistical tests for finding significant differences between algorithms. However, these analyses do not consider situations where the EA failed to finish due to numerical errors or excessive computational time. Furthermore, the ability of an EA to continuously make search improvements is usually overlooked. In this paper we propose the use of the theory from survival analysis for empirically investigating the behavior of EAs, even in situations where not all the experiments finish in a reasonable time. We introduce two scenarios for the application of survival analysis in EAs. Survival trees, a machine learning technique adapted to the survival analysis scenario, are applied to automatically identify combinations of EA parameters with similar effect in the behavior of the algorithm.
引用
收藏
页码:825 / 832
页数:8
相关论文
共 50 条
  • [1] On the use of multi-objective evolutionary algorithms for survival analysis
    Setzkorn, Christian
    Taktak, Azzam F. G.
    Damato, Bertil E.
    BIOSYSTEMS, 2007, 87 (01) : 31 - 48
  • [2] Comparison of Different Evolutionary Algorithms for Global Supply Chain Optimisation and Parameter Analysis
    Ibrahimov, Maksud
    Mohais, Arvind
    Schellenberg, Sven
    Michalewicz, Zbigniew
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2407 - 2414
  • [3] Visual Analysis of Evolutionary Optimization Algorithms
    Biswas, Anupam
    Biswas, Bhaskar
    PROCEEDINGS OF 2014 2ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL AND BUSINESS INTELLIGENCE (ISCBI), 2014, : 81 - 84
  • [4] A Network Theoretic Analysis of Evolutionary Algorithms
    Kuber, Karthik
    Card, Stuart W.
    Mehrotra, Kishan G.
    Mohan, Chilukuri K.
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 585 - 593
  • [5] An Initial Error Analysis for Evolutionary Algorithms
    He, Jun
    Zhou, Yuren
    Li, Guangming
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 317 - 318
  • [6] Evolutionary algorithms used to TSDC analysis
    Gubanski, Adam
    Rezmer, Jacek
    Lesniak, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (06): : 120 - 123
  • [7] Mixing Different Search Biases in Evolutionary Learning Algorithms
    Davoian, Kristina
    Lippe, Wolfram-M.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, 2009, 5768 : 111 - 120
  • [8] Comparison of evolutionary algorithms implemented in different programming languages
    Ravber, Miha
    Moravec, Matej
    Mernik, Marjan
    ELEKTROTEHNISKI VESTNIK, 2022, 89 (1-2): : 46 - 52
  • [9] Data Visualization Scenarios for the Analysis of Computational Evolutionary Techniques
    Rosa Nassar dos Santos, Yuri Santa
    Meiguins, Aruanda Simoes
    dos Santos, Diego Hortencio
    Resque dos Santos, Carlos Gustavo
    de Morais, Jefferson Magalhaes
    Meiguins, Bianchi Serique
    2019 23RD INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): BIOMEDICAL VISUALIZATION AND GEOMETRIC MODELLING & IMAGING, 2019, : 292 - 299
  • [10] Towards an Extended Evolutionary Game Theory with Survival Analysis and Agreement Algorithms for Modeling Uncertainty, Vulnerability, and Deception
    Ma, Zhanshan
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PROCEEDINGS, 2009, 5855 : 608 - 618