Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data

被引:252
作者
Wu, CO [1 ]
Chiang, CT
Hoover, DR
机构
[1] Johns Hopkins Univ, GWC Whiting Sch Engn, Dept Math Sci, Baltimore, MD 21218 USA
[2] Tunghai Univ, Dept Stat, Taichung, Taiwan
[3] Johns Hopkins Univ Hosp, Sch Hyg & Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
关键词
asymptotic normality; confidence interval; kernel estimate; nonparametric regression;
D O I
10.2307/2670054
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the estimation of the k + 1-dimensional nonparametric component beta(t) of the varying-coefficient model Y(t) = X-T(t)beta(t) + epsilon(t) based on longitudinal observations (Y-ij, X-i(t(ij)), t(ij)), i = 1,..., n,j = i,..., n(i), where t(ij) is the jth observed design time point t of the ith subject and Y-ij and X-i(t(ij)) are the real-valued outcome and Rk+1 valued covariate vectors of the ith subject at t(ij). The subjects are independently selected, but the repeated measurements within subject are possibly correlated. Asymptotic distributions are established for a kernel estimate of beta(t) that minimizes a local least squares criterion. These asymptotic distributions are used to construct a class of approximate pointwise and simultaneous confidence regions for beta(t). Applying these methods to an epidemiological study, we show that our procedures are useful for predicting CD4 (T-helper lymphocytes) cell changes among HIV (human immunodeficiency virus)-infected persons. The finite-sample properties of our procedures are studied through Monte Carlo simulations.
引用
收藏
页码:1388 / 1402
页数:15
相关论文
共 31 条
[11]  
Hardle W., 1990, APPL NONPARAMETRIC R, DOI DOI 10.1017/CCOL0521382483
[12]  
HART JD, 1991, J ROY STAT SOC B MET, V53, P173
[13]   KERNEL REGRESSION ESTIMATION USING REPEATED MEASUREMENTS DATA [J].
HART, JD ;
WEHRLY, TE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) :1080-1088
[14]   CONSISTENCY OF CROSS-VALIDATION WHEN THE DATA ARE CURVES [J].
HART, JD ;
WEHRLY, TE .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 45 (02) :351-361
[15]  
HASTIE T, 1993, J ROY STAT SOC B MET, V55, P757
[16]   SUBSET COMPLEMENT ADDITION UPPER-BOUNDS - AN IMPROVED INCLUSION EXCLUSION METHOD [J].
HOOVER, DR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 24 (02) :195-202
[17]  
HOOVER DR, IN PRESS BIOMETRIKA
[18]   PROBABILITIES OF MAXIMAL DEVIATIONS FOR NONPARAMETRIC REGRESSION FUNCTION ESTIMATES [J].
JOHNSTON, GJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :402-414
[19]   THE MULTICENTER AIDS COHORT STUDY - RATIONALE, ORGANIZATION, AND SELECTED CHARACTERISTICS OF THE PARTICIPANTS [J].
KASLOW, RA ;
OSTROW, DG ;
DETELS, R ;
PHAIR, JP ;
POLK, BF ;
RINALDO, CR .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1987, 126 (02) :310-318
[20]   CONFIDENCE BANDS FOR REGRESSION-FUNCTIONS [J].
KNAFL, G ;
SACKS, J ;
YLVISAKER, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1985, 80 (391) :683-691