Infrared Colloidal Quantum Dot Image Sensors

被引:79
作者
Pejovic, Vladimir [1 ,2 ]
Georgitzikis, Epimitheas [1 ]
Lee, Jiwon [1 ]
Lieberman, Itai [1 ]
Cheyns, David [1 ]
Heremans, Paul [1 ,2 ]
Malinowski, Pawel E. [1 ]
机构
[1] IMEC, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT, B-3001 Leuven, Belgium
关键词
Lead; Image sensors; Photodiodes; Imaging; Sensors; Infrared image sensors; Image resolution; Colloidal quantum dot (CQD) image sensors; infrared imaging; lead sulfide (PbS); mercury telluride (HgTe); short-wave infrared (SWIR) image sensors; EFFICIENCY;
D O I
10.1109/TED.2021.3133191
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum dots (QDs) have been explored for many photonic applications, both as emitters and absorbers. Thanks to the bandgap tunability and ease of processing, they are prominent candidates to disrupt the field of imaging. This review article illustrates the state of technology for infrared image sensors based on colloidal QD absorbers. Up to now, this wavelength range has been dominated by III-V and II-VI imagers realized using flip-chip bonding. Monolithic integration of QDs with the readout chip promises to make short-wave infrared (SWIR) imaging accessible to applications that could previously not even consider this modality. Furthermore, QD sensors show already state-of-the-art figures of merit, such as sub-2-mu m pixel pitch and multimegapixel resolution. External quantum efficiencies already exceed 60% at 1400 nm. With the potential to increase the spectrum into extended SWIR and even mid-wave infrared, QD imagers are a very interesting and dynamic technology segment.
引用
收藏
页码:2840 / 2850
页数:11
相关论文
共 64 条
[1]  
Allen M., 2021, SID S DIGEST TECHNIC, V52, P987, DOI DOI 10.1002/SDTP.14855
[2]   ROIC for 3 μm pixel pitch colloidal quantum dot detectors [J].
Bakulin, A. ;
D'Souza, A., I ;
Masterjohn, C. ;
Mei, E. ;
Li, C. ;
Klem, E. ;
Temple, D. .
IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS V, 2018, 10656
[3]   Device design for global shutter operation in a 1.1 μm pixel image sensor and its application to near infrared sensing [J].
Beiley, Zach M. ;
Cheung, Robin ;
Hanelt, Erin F. ;
Mandelli, Emanuele ;
Meitzner, Jet ;
Park, Jae ;
Pattantyus-Abraham, Andras ;
Sargent, Edward H. .
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXV, 2017, 10098
[4]   Infrared Solution-Processed Quantum Dot Solar Cells Reaching External Quantum Efficiency of 80% at 1.35 μm and Js']Jsc in Excess of 34 mA cm-2 [J].
Bi, Yu ;
Pradhan, Santanu ;
Gupta, Shuchi ;
Akgul, Mehmet Zafer ;
Stavrinadis, Alexandros ;
Konstantatos, Gerasimos .
ADVANCED MATERIALS, 2018, 30 (07)
[5]   Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells [J].
Biondi, Margherita ;
Choi, Min-Jae ;
Lee, Seungjin ;
Bertens, Koen ;
Wei, Mingyang ;
Kirmani, Ahmad R. ;
Lee, Geonhui ;
Kung, Hao Ting ;
Richter, Lee J. ;
Hoogland, Sjoerd ;
Lu, Zheng-Hong ;
de Arquer, F. Pelayo Garcia ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2021, 6 (02) :468-476
[6]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[7]   Advances in HgTe Colloidal Quantum Dots for Infrared Detectors [J].
Buurma, Christopher ;
Ciani, Anthony J. ;
Pimpinella, Richard E. ;
Feldman, Jered S. ;
Grein, Christoph H. ;
Guyot-Sionnest, Philippe .
JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (11) :6685-6688
[8]   MWIR Imaging With Low Cost Colloidal Quantum Dot Films [J].
Buurma, Christopher ;
Pimpinella, Richard E. ;
Ciani, Anthony J. ;
Feldman, Jered S. ;
Grein, Christoph H. ;
Guyot-Sionnest, Philippe .
OPTICAL SENSING, IMAGING, AND PHOTON COUNTING: NANOSTRUCTURED DEVICES AND APPLICATIONS 2016, 2016, 9933
[9]   Quantum dots luminescence enhancement due to illumination with UV/Vis light [J].
Carrillo-Carrion, Carolina ;
Cardenas, Soledad ;
Simonet, Bartolome M. ;
Valcarcel, Miguel .
CHEMICAL COMMUNICATIONS, 2009, (35) :5214-5226
[10]  
Choi H., 2017, SCI REP-UK, V7, DOI [10.1038/s41598-017-00669, DOI 10.1038/S41598-017-00669]