PROPERTIES OF MEROMORPHIC SOLUTIONS OF q-DIFFERENCE EQUATIONS

被引:0
作者
Qi, Xiaoguang [1 ]
Yang, Lianzhong [2 ]
机构
[1] Jinan Univ, Sch Math, Jinan 250022, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Meromorphic functions; q-difference equation; growth; zero order; PAINLEVE EQUATIONS; NEVANLINNA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we utilize Nevanlinna value distribution theory to study the solvability and the growth of meromorphic function f (z) that satisfies some q-difference equations, which can be seen the q-difference analogues of Painleve I and II equations. This article extends earlier results by Chen et al [2, 3].
引用
收藏
页数:9
相关论文
共 14 条
[1]  
Barnett DC, 2007, P ROY SOC EDINB A, V137, P457, DOI 10.1017/S0308210506000102
[2]  
Chen ZX, 2011, KODAI MATH J, V34, P244
[3]   Value distribution of meromorphic solutions of certain difference Painleve equations [J].
Chen, Zong-Xuan ;
Shon, Kwang Ho .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) :556-566
[4]  
Fuchs L., 1905, CR HEBD ACAD SCI, V141, P555
[5]  
Gambier B., 1910, ACTA MATH, V33, P1, DOI [10.1007/BF02393211, DOI 10.1007/BF02393211, DOI 10.1007/BF02393211)]
[6]  
GOLDSTEIN R, 1971, J LOND MATH SOC, V4, P357
[7]  
Goldstein R, 1978, AEQUATIONES MATH, V18, P112
[8]   Finite-order meromorphic solutions and the discrete Painleve equations [J].
Halburd, R. G. ;
Korhonen, R. J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :443-474
[9]   Clunie theorems for difference and q-difference polynomials [J].
Laine, Ilpo ;
Yang, Chung-Chun .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 :556-566