Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst

被引:72
作者
Elumeeva, Karina [1 ]
Masa, Justus [1 ]
Medina, Danea [1 ]
Ventosa, Edgar [1 ]
Seisel, Sabine [1 ]
Kayran, Yasin Ugur [1 ]
Genc, Aziz [2 ,3 ]
Bobrowski, Tim [1 ]
Weide, Philipp [4 ]
Arbiol, Jordi [2 ]
Muhler, Martin [4 ]
Schuhmann, Wolfgang [1 ]
机构
[1] Ruhr Univ Bochum, CES, Analyt Chem, Univ Str 150, D-44780 Bochum, Germany
[2] BIST, CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Catalonia, Spain
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Catalonia, Spain
[4] Ruhr Univ Bochum, Lab Ind Chem, Univ Str 150, D-44780 Bochum, Germany
关键词
AIR BATTERIES; CO OXIDE; REDUCTION; EVOLUTION; NITROGEN; CATALYST; EFFICIENT; FE; ELECTROLYTES; ACTIVATION;
D O I
10.1039/c7ta06995b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of reversible oxygen electrodes, able to drive both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), is still a great challenge. We describe a very efficient and stable bifunctional electrocatalytic system for reversible oxygen electrodes obtained by direct CVD growth of nitrogen-doped carbon nanotubes (NCNTs) on the surface of cobalt boride (CoB) nanoparticles. A detailed investigation of the crystalline structure and elemental distribution of CoB before and after NCNT growth reveals that the NCNTs grow on small CoB nanoparticles formed in the CVD process. The resultant CoB/NCNT system exhibited outstanding activity in catalyzing both the OER and the ORR in 0.1 M KOH with an overvoltage difference of only 0.73 V between the ORR at -1 mA cm(-2) and the OER at +10 mA cm(-2). The proposed CoB/NCNT catalyst showed stable performance during 50 h of OER stability assessment in 0.1 M KOH. Moreover, CoB/NCNT spray-coated on a gas diffusion layer as an air-breathing electrode proved its high durability during 170 galvanostatic charge-discharge (OER/ORR) test cycles (around 30 h) at +/- 10 mA cm(-2) in 6 M KOH, making it an excellent bifunctional catalyst for potential Zn-air battery application.
引用
收藏
页码:21122 / 21129
页数:8
相关论文
共 52 条
[1]   Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles [J].
Burke, Michaela S. ;
Enman, Lisa J. ;
Batchellor, Adam S. ;
Zou, Shihui ;
Boettcher, Shannon W. .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7549-7558
[2]   Materials science aspects of zinc-air batteries: A review [J].
Caramia V. ;
Bozzini B. .
Materials for Renewable and Sustainable Energy, 2014, 3 (02)
[3]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597
[4]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[5]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[6]   Advances in electrocatalysts for oxygen evolution reaction of water electrolysis -from metal oxides to carbon nanotubes [J].
Cheng, Yi ;
Jiang, San Ping .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2015, 25 (06) :545-553
[7]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[8]  
Cobo S, 2012, NAT MATER, V11, P802, DOI [10.1038/NMAT3385, 10.1038/nmat3385]
[9]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[10]   Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes [J].
Elumeeva, K. ;
Fechler, N. ;
Fellinger, T. P. ;
Antonietti, M. .
MATERIALS HORIZONS, 2014, 1 (06) :588-594