An (F1, F4)-partition of graphs with low genus and girth at least 6

被引:4
作者
Chen, Min [1 ]
Raspaud, Andre [2 ]
Yu, Weiqiang [1 ,3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, 351 Cours Liberat, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Bordeaux, LaBRI, Talence, France
[3] Univ Paris Diderot, CNRS IRIF, Paris, France
基金
中国国家自然科学基金;
关键词
forest; girth; maximum average degree; vertex partition; INDEPENDENT VERTEX SET; EVERY PLANAR MAP; SPARSE GRAPHS; MAXIMUM DEGREE; ARBORICITY; DECOMPOSITIONS; SUBGRAPH; FOREST;
D O I
10.1002/jgt.22734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph. If the vertex set V (G) can be partitioned into two nonempty subsets V-1 and V-2 such that G[V-1] and G[V-2] are graphs with maximum degree at most d(1) and d(2), respectively, then we say that G has a (Delta(d1), Delta(d2))-partition. A similar definition can be given for the notation (F-d1, F-d2)-partition if G[V-i] is a forest with maximum degree at most d(i), where i is an element of {1, 2}. The maximum average degree of G is defined to be mad(G) = max{2 vertical bar E(H)vertical bar/vertical bar V(H)vertical bar H subset of G}. In this paper, we prove that every graph G with mad(G) <= 16/5 admits an (F-1, F-4)-partition. As a corollary, every graph with low genus and girth at least 6 admits an (F-1, F-4)-partition. This improves a result of Borodin and Kostochka saying that every graph G with mad(G) <= 16/5 admits a (Delta(1), Delta(4))-partition.
引用
收藏
页码:186 / 206
页数:21
相关论文
共 20 条
[1]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[2]   EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY [J].
APPEL, K ;
HAKEN, W ;
KOCH, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :491-567
[3]   Defective 2-colorings of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. V. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 104 :72-80
[4]  
Borodin OV, 2011, SIBERIAN MATH J+, V52, P796
[5]   Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Ochem, P. ;
Raspaud, A. .
JOURNAL OF GRAPH THEORY, 2010, 65 (02) :83-93
[6]  
Borodin O.V., 2010, Journal of Applied and Indus- trial Mathematics, V4, P21
[7]  
Borodin O.V., 2001, DISKRETN ANAL ISSLED, V1, P34
[8]  
BORODIN OV, 1976, DOKL AKAD NAUK SSSR+, V231, P18
[9]  
Chappell G., 2005, Algorithms Combin, V26, P435
[10]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+