A Label Similarity Probability Filter for Hyperspectral Image Postclassification

被引:16
作者
Sun, Weiwei [1 ]
Yang, Gang [1 ]
Ren, Kai [1 ]
Peng, Jiangtao [2 ]
Ge, Chiru [3 ]
Meng, Xiangchao [4 ]
Du, Qian [5 ]
机构
[1] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315000, Peoples R China
[2] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[3] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
[4] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315000, Peoples R China
[5] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
关键词
Hyperspectral imaging; Support vector machines; Probability; Feature extraction; Information filters; Geography; Degradation; Hyperspectral; label similarity probability filter (LSPF); postclassification; spectral-spatial methods; LOW-RANK REPRESENTATION; CLASSIFICATION; FUSION; GRAPH;
D O I
10.1109/JSTARS.2021.3094197
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a label similarity probability filter (LSPF) to make hyperspectral image postclassification. The LSPF is inspired by the first law of geography and proposes a class label probability function to quantify the probability of both centered and its neighboring pixels belonging to the same class. It first classifies the hyperspectral data using the regular support vector machine classifier. Then, it binarizes the posterior classification result to obtain the binary label maps of each class. After that, it traverses all spatial windows centered by each pixel and calculates the cumulative probability of all pixels in each class. Finally, the cumulative probabilities are used to make reclassification to obtain the refined classification map. The experiments on Indian Pines, Pavia University, and ZY1-02D Yellow River Estuary data show that LSPF greatly improves the classification accuracy of spectral signatures and outperforms other state-of-the-art spectral-spatial methods.
引用
收藏
页码:6897 / 6905
页数:9
相关论文
共 48 条
[1]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[2]   Trilateral Smooth Filtering for Hyperspectral Image Feature Extraction [J].
Chen, Zhikun ;
Jiang, Junjun ;
Zhou, Chong ;
Jiang, Xinwei ;
Fu, Shaoyuan ;
Cai, Zhihua .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (05) :781-785
[3]   Hyperspectral Image Classification via Compressive Sensing [J].
Della Porta, Charles J. ;
Bekit, Adam A. ;
Lampe, Bernard H. ;
Chang, Chein-, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10) :8290-8303
[4]   Fusion of Multiple Edge-Preserving Operations for Hyperspectral Image Classification [J].
Duan, Puhong ;
Kang, Xudong ;
Li, Shutao ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12) :10336-10349
[5]   Noise-Robust Hyperspectral Image Classification via Multi-Scale Total Variation [J].
Duan, Puhong ;
Kang, Xudong ;
Li, Shutao ;
Ghamisi, Pedram .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) :1948-1962
[6]   Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter [J].
Dundar, Tugcan ;
Ince, Taner .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (02) :246-250
[7]   Hyperspectral Image Classification via Multiple-Feature-Based Adaptive Sparse Representation [J].
Fang, Leyuan ;
Wang, Cheng ;
Li, Shutao ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (07) :1646-1657
[8]   Spectral-Spatial Hyperspectral Image Classification Using a Multiscale Conservative Smoothing Scheme and Adaptive Sparse Representation [J].
Gao, Qishuo ;
Lim, Samsung ;
Jia, Xiuping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10) :7718-7730
[9]   Advanced Spectral Classifiers for Hyperspectral Images A review [J].
Ghamisi, Pedram ;
Plaza, Javier ;
Chen, Yushi ;
Li, Jun ;
Plaza, Antonio .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (01) :8-32
[10]   Hyperspectral Data Classification Using Extended Extinction Profiles [J].
Ghamisi, Pedram ;
Souza, Roberto ;
Benediktsson, Jon Atli ;
Rittner, Leticia ;
Lotufo, Roberto ;
Zhu, Xiao Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) :1641-1645