On the simulation of general tempered stable Ornstein-Uhlenbeck processes

被引:10
作者
Grabchak, Michael [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
基金
俄罗斯科学基金会;
关键词
Tempered stable distributions; Ornstein-Uhlenbeck processes; rejection sampling; selfdecomposability; DISTRIBUTIONS; FINITE;
D O I
10.1080/00949655.2020.1714621
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We give an explicit representation for the transition law of a tempered stable Ornstein-Uhlenbeck process and use it to develop a rejection sampling algorithm for exact simulation of increments from this process. Our results apply to general classes of both univariate and multivariate tempered stable distributions and contain a number of previously studied results as special cases.
引用
收藏
页码:1057 / 1081
页数:25
相关论文
共 34 条
[1]   COMPUTER-GENERATION OF POISSON DEVIATES FROM MODIFIED NORMAL-DISTRIBUTIONS [J].
AHRENS, JH ;
DIETER, U .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02) :163-179
[2]   GENERATING GAMMA-VARIATES BY A MODIFIED REJECTION TECHNIQUE [J].
AHRENS, JH ;
DIETER, U .
COMMUNICATIONS OF THE ACM, 1982, 25 (01) :47-54
[3]  
[Anonymous], 2004, Financ. Math. Ser.
[4]  
[Anonymous], 1987, MULTIVARIATE STAT SI, DOI DOI 10.1002/9781118150740
[5]  
[Anonymous], 2011, Financial Models with Levy Processes and Volatility Clustering
[6]   Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :167-207
[7]   Econometric analysis of realized volatility and its use in estimating stochastic volatility models [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :253-280
[8]  
Benth F.E., 2007, APPL MATH FINANCE, V14, P153, DOI DOI 10.1080/13504860600725031
[9]   TEMPERED INFINITELY DIVISIBLE DISTRIBUTIONS AND PROCESSES [J].
Bianchi, M. L. ;
Rachev, S. T. ;
Kim, Y. S. ;
Fabozzi, F. J. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (01) :2-26
[10]   Tempered stable Ornstein- Uhlenbeck processes: A practical view [J].
Bianchi, Michele Leonardo ;
Rachev, Svetlozar T. ;
Fabozzi, Frank J. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) :423-445