An enumeration of equilateral triangle dissections

被引:3
|
作者
Drapal, Les [1 ]
Hamalainen, Carlo [1 ]
机构
[1] Charles Univ Prague, Dept Math, Prague 18675 8, Czech Republic
关键词
triangle dissection; Latin trade; LATIN TRADES; TRIANGULATIONS;
D O I
10.1016/j.dam.2010.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We enumerate all dissections of an equilateral triangle into smaller equilateral triangles up to size 20, where each triangle has integer side lengths. A perfect dissection has no two triangles of the same side, counting up- and down-oriented triangles as different. We computationally prove Tutte's conjecture that the smallest perfect dissection has size 15 and we find all perfect dissections up to size 20. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1479 / 1495
页数:17
相关论文
共 50 条
  • [1] A note on perfect dissections of an equilateral triangle
    Zak, Andrzej
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 44 : 87 - 93
  • [2] Distinct equilateral triangle dissections of convex regions
    Donovan, Diane M.
    Lefevre, James G.
    Mccourt, Thomas A.
    Cavenagh, Nicholas J.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2012, 53 (02): : 189 - 210
  • [3] Distances of group tables and latin squares via equilateral triangle dissections
    Szabados, Michal
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 123 (01) : 1 - 7
  • [4] ON PARTITIONS OF AN EQUILATERAL TRIANGLE
    GRAHAM, RL
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (02): : 394 - &
  • [5] A hidden equilateral triangle
    Anglesio, J
    Lossers, OP
    Fan, CK
    Killingbergtro, HG
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (08): : 769 - 771
  • [6] THE EIGENVALUES OF AN EQUILATERAL TRIANGLE
    PINSKY, MA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (05) : 819 - 827
  • [7] Resonance mode of an equilateral triangle with triangle notch
    Zhang Zhi-Dong
    Gao Si-Min
    Wang Hui
    Wang Hong-Yan
    ACTA PHYSICA SINICA, 2014, 63 (12)
  • [8] Packing and covering a unit equilateral triangle with equilateral triangles
    Zhang, YQ
    Fan, YH
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [9] A Green function for the equilateral triangle
    Michelle E. Johnston
    Jan C. Myland
    Keith B. Oldham
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 31 - 44
  • [10] AN INSCRIBED EQUILATERAL TRIANGLE INEQUALITY
    FUKUTA, J
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (05): : 465 - 465