HETEROGENEOUS MULTISCALE METHOD FOR MAXWELL'S EQUATIONS

被引:7
作者
Hochbruck, Marlis [1 ]
Maier, Bernhard [1 ]
Stohrer, Christian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl & Numer Math, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
heterogeneous multiscale method; first-order time-dependent Maxwell's equations; fully discrete error analysis; ERROR ANALYSIS; DISCRETIZATIONS; CONVERGENCE;
D O I
10.1137/18M1234072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a finite element heterogeneous multiscale method for time-dependent Maxwell's equations in first-order formulation in highly oscillatory materials using Nedelec's edge elements. Based on a uniform approach for the error analysis of nonconforming space discretizations [D. Hipp, M. Hochbruck, and C. Stohrer, IMA J. Numer. Anal., 39 (2019), pp. 1206-1245], we prove an error bound for the semidiscrete scheme. We further present error bounds for the fully discrete scheme, where we consider time discretization using algebraically stable Runge-Kutta methods, the Crank-Nicolson method, and the leapfrog method. These error bounds are confirmed by numerical experiments.
引用
收藏
页码:1147 / 1171
页数:25
相关论文
共 29 条
  • [1] On a priori error analysis of fully discrete heterogeneous multiscale FEM
    Abdulle, A
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (02) : 447 - 459
  • [2] Abdulle A., 2009, GAKUTO Internat. Ser. Math. Sci. Appl., V31, P133
  • [3] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697
  • [4] The heterogeneous multiscale method
    Abdulle, Assyr
    Weinan, E.
    Engquist, Bjoern
    Vanden-Eijnden, Eric
    [J]. ACTA NUMERICA, 2012, 21 : 1 - 87
  • [5] COUPLING HETEROGENEOUS MULTISCALE FEM WITH RUNGE-KUTTA METHODS FOR PARABOLIC HOMOGENIZATION PROBLEMS: A FULLY DISCRETE SPACETIME ANALYSIS
    Abdulle, Assyr
    Vilmart, Gilles
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (06)
  • [6] Abdulle A, 2012, MATH COMPUT, V81, P687
  • [7] [Anonymous], 2002, CLASSICS APPL MATH
  • [8] [Anonymous], 2011, ASYMPTOTIC ANAL PERI
  • [9] A FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD WITH IMPROVED CONTROL OVER THE MODELING ERROR
    Arjmand, Doghonay
    Stohrer, Christian
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (02) : 463 - 487
  • [10] deal. II - A general-purpose object-oriented finite element library
    Bangerth, W.
    Hartmann, R.
    Kanschat, G.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):