The discretization problem for continuous frames

被引:26
作者
Freeman, Daniel [1 ,2 ]
Speegle, Darrin [1 ]
机构
[1] St Louis Univ, Dept Math & Stat, St Louis, MO 63103 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
Frames; Continuous frames; Coherent states; Sampling; THEOREM; SPACES;
D O I
10.1016/j.aim.2019.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize when a coherent state or continuous frame for a Hilbert space may be sampled to obtain a frame, which solves the discretization problem for continuous frames. In particular, we prove that every bounded continuous frame for a Hilbert space may be sampled to obtain a frame. We give multiple applications to different classes of frames such as scalable frames and Gabor frames. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:784 / 813
页数:30
相关论文
共 24 条
[1]   A Lyapunov-type theorem from Kadison-Singer [J].
Akemann, Charles ;
Weaver, Nik .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :517-524
[2]   CONTINUOUS FRAMES IN HILBERT-SPACE [J].
ALI, ST ;
ANTOINE, JP ;
GAZEAU, JP .
ANNALS OF PHYSICS, 1993, 222 (01) :1-37
[3]  
ALI ST, 2000, GRAD TEXT C, P1
[4]   EXTENSIONS, RESTRICTIONS, AND REPRESENTATIONS OF STATES ON C-STAR-ALGEBRAS [J].
ANDERSON, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 249 (02) :303-329
[5]  
[Anonymous], 2003, APPL NUMER HARMON AN
[6]  
Balan R., 2005, Proceedings of SPIE, V5914
[7]   Sigma-Delta (ΣΔ) quantization and finite frames [J].
Benedetto, JJ ;
Powell, AM ;
Yilmaz, Ö .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) :1990-2005
[8]   Finite normalized tight frames [J].
Benedetto, JJ ;
Fickus, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :357-385
[9]   INVERTIBILITY OF LARGE SUBMATRICES WITH APPLICATIONS TO THE GEOMETRY OF BANACH-SPACES AND HARMONIC-ANALYSIS [J].
BOURGAIN, J ;
TZAFRIRI, L .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 57 (02) :137-224
[10]  
Bownik M., 2018, SPRINGER P PHYS, V205