Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries

被引:341
|
作者
Li, Xifei [1 ]
Geng, Dongsheng [1 ]
Zhang, Yong [1 ]
Meng, Xiangbo [1 ]
Li, Ruying [1 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, Nanomat & Energy Lab, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graphene; Nitrogen doping; Anode; Cycle stability; Lithium ion batteries; CARBON NANOTUBE BUNDLES; STORAGE; CAPACITY; ENERGY; REDUCTION;
D O I
10.1016/j.elecom.2011.05.012
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The specific capacity of nitrogen-doped graphene nanosheet (N-GNS) evidently increases with charge/discharge cycles, exhibiting superior electrochemical performance. N-GNS presented a specific capacity of 684 mAh g(-1) in the 501st cycles while only 452 mAh g(-1) in the 100th cycle, accounting for higher cycling stability and larger specific capacity in comparison to a pristine graphene and a commercialized graphite anode. The obtained significant improvement is attributed to the incorporated nitrogen to graphene planes with a result of more structural defects during cycling. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:822 / 825
页数:4
相关论文
共 50 条
  • [1] Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries
    Zhang, Kejun
    Han, Pengxian
    Gu, Lin
    Zhang, Lixue
    Liu, Zhihong
    Kong, Qingshan
    Zhang, Chuanjian
    Dong, Shanmu
    Zhang, Zhongyi
    Yao, Jianhua
    Xu, Hongxia
    Cui, Guanglei
    Chen, Liquan
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (02) : 658 - 664
  • [2] Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries
    Xiong, Dongbin
    Li, Xifei
    Bai, Zhimin
    Shan, Hui
    Fan, Linlin
    Wu, Chunxia
    Li, Dejun
    Lu, Shigang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) : 10643 - 10651
  • [3] Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries
    Cai, Dandan
    Wang, Suqing
    Ding, Liangxin
    Lian, Peichao
    Zhang, Shanqing
    Peng, Feng
    Wang, Haihui
    JOURNAL OF POWER SOURCES, 2014, 254 : 198 - 203
  • [4] Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries
    Huo, Kaifu
    An, Weili
    Fu, Jijiang
    Gao, Biao
    Wang, Lei
    Peng, Xiang
    Cheng, Gary J.
    Chu, Paul K.
    JOURNAL OF POWER SOURCES, 2016, 324 : 233 - 238
  • [5] Ion assisted anchoring Sn nanoparticles on nitrogen-doped graphene as an anode for lithium ion batteries
    Zhan, Liang
    Zhou, Xiaosong
    Luo, Jin
    Ning, Xiaomei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24913 - 24921
  • [6] An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries
    Gomez-Martin, A.
    Martinez-Fernandez, J.
    Ruttert, Mirco
    Winter, Martin
    Placke, Tobias
    Ramirez-Rico, J.
    CARBON, 2020, 164 (164) : 261 - 271
  • [7] Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries
    Ji, Dehui
    Wan, Yizao
    Yang, Zhiwei
    Li, Chunzhi
    Xiong, Guangyao
    Li, Lili
    Han, Ming
    Guo, Ruisong
    Luo, Honglin
    ELECTROCHIMICA ACTA, 2016, 192 : 22 - 29
  • [8] Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Xie, Xuedong
    Zhao, Weiling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3876 - 3886
  • [9] Porous nitrogen-doped Sn/C film as free-standing anodes for lithium ion batteries
    Yang, Min
    Liu, Li
    Yan, Hanxiao
    Zhang, Wen
    Su, Die
    Wen, Jiaxing
    Liu, Wen
    Yuan, Yiting
    Liu, Junfang
    Wang, Xianyou
    APPLIED SURFACE SCIENCE, 2021, 551
  • [10] Incorporation of heterostructured Sn/SnO nanoparticles in crumpled nitrogen-doped graphene nanosheets for application as anodes in Lithium-ion batteries
    Du, Fei-Hu
    Liu, Yu-Si
    Long, Jie
    Zhu, Qian-Cheng
    Wang, Kai-Xue
    Wei, Xiao
    Chen, Jie-Sheng
    CHEMICAL COMMUNICATIONS, 2014, 50 (69) : 9961 - 9964