Electrokinetically-Driven Assembly of Gold Colloids into Nanostructures for Surface-Enhanced Raman Scattering

被引:11
作者
Dies, Hannah [1 ]
Bottomley, Adam [2 ]
Nicholls, Danielle Lilly [3 ]
Stamplecoskie, Kevin [2 ]
Escobedo, Carlos [1 ]
Docoslis, Aristides [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada
[3] Univ Toronto, Sch Med, Toronto, ON M5S 1A8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
metallic nanostructures; nanoparticles; electrokinetics; microelectrodes; surface-enhanced Raman scattering; NANOPARTICLES; GROWTH; SERS;
D O I
10.3390/nano10040661
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced Raman scattering (SERS) enables the highly sensitive detection of (bio)chemical analytes in fluid samples; however, its application requires nanostructured gold/silver substrates, which presents a significant technical challenge. Here, we develop and apply a novel method for producing gold nanostructures for SERS application via the alternating current (AC) electrokinetic assembly of gold nanoparticles into two intricate and frequency-dependent structures: (1) nanowires, and (2) branched "nanotrees", that create extended sensing surfaces. We find that the growth of these nanostructures depends strongly on the parameters of the applied AC electric field (frequency and voltage) and ionic composition, specifically the electrical conductivity of the fluid. We demonstrate the sensing capabilities of these gold nanostructures via the chemical detection of rhodamine 6G, a Raman dye, and thiram, a toxic pesticide. Finally, we demonstrate how these SERS-active nanostructures can also be used as a concentration amplification device that can electrokinetically attract and specifically capture an analyte (here, streptavidin) onto the detection site.
引用
收藏
页数:13
相关论文
共 34 条
  • [1] Aoyagi Y., 2013, Optical Properties of Advanced Materials
  • [2] Recent progress in SERS biosensing
    Bantz, Kyle C.
    Meyer, Audrey F.
    Wittenberg, Nathan J.
    Im, Hyungsoon
    Kurtulus, Ozge
    Lee, Si Hoon
    Lindquist, Nathan C.
    Oh, Sang-Hyun
    Haynes, Christy L.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (24) : 11551 - 11567
  • [3] THE FORMATION OF PATTERNS IN NONEQUILIBRIUM GROWTH
    BENJACOB, E
    GARIK, P
    [J]. NATURE, 1990, 343 (6258) : 523 - 530
  • [4] Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires
    Bhatt, KH
    Velev, OD
    [J]. LANGMUIR, 2004, 20 (02) : 467 - 476
  • [5] Cherukulappurath S., 2014, CHEM MATER, V26, P59
  • [6] On-chip surface-based detection with nanohole arrays
    De Leebeeck, Angela
    Kumar, L. K. Swaroop
    de Lange, Victoria
    Sinton, David
    Gordon, Reuven
    Brolo, Alexandre G.
    [J]. ANALYTICAL CHEMISTRY, 2007, 79 (11) : 4094 - 4100
  • [7] Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates
    Dies, Hannah
    Siampani, Maria
    Escobedo, Carlos
    Docoslis, Aristides
    [J]. SENSORS, 2018, 18 (08)
  • [8] Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced Raman scattering substrates
    Dies, Hannah
    Raveendran, Joshua
    Escobedo, Carlos
    Docoslis, Aristides
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2018, 257 : 382 - 388
  • [9] In situ assembly of active surface-enhanced Raman scattering substrates via electric field-guided growth of dendritic nanoparticle structures
    Dies, Hannah
    Raveendran, Joshua
    Escobedo, Carlos
    Docoslis, Aristides
    [J]. NANOSCALE, 2017, 9 (23) : 7847 - 7857
  • [10] Ding SY, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.71, 10.1038/natrevmats.2016.21]