The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis

被引:40
作者
Sollberger, David [1 ]
Schmelzbach, Cedric [1 ]
Robertsson, Johan O. A. [1 ]
Greenhalgh, Stewart A. [2 ]
Nakamura, Yosio [3 ]
Khan, Amir [1 ]
机构
[1] ETH, Inst Geophys, Zurich, Switzerland
[2] King Fahd Univ Petr & Minerals, Dept Earth Sci, Dhahran, Saudi Arabia
[3] Univ Texas Austin, Inst Geophys, Austin, TX USA
关键词
Moon; seismology; lunar crust; seismic; rotational seismology; gradiometry; GRADIOMETRY; INVERSION; MODEL; MOON;
D O I
10.1002/2016GL070883
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.
引用
收藏
页码:10078 / 10087
页数:10
相关论文
共 36 条
[1]  
Aki K., 2002, QUANTITATIVE SEISMOL
[2]   GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust [J].
Besserer, Jonathan ;
Nimmo, Francis ;
Wieczorek, Mark A. ;
Weber, Renee C. ;
Kiefer, Walter S. ;
McGovern, Patrick J. ;
Andrews-Hanna, Jeffrey C. ;
Smith, David E. ;
Zuber, Maria T. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (16) :5771-5777
[3]   Archiving the Apollo active seismic data [J].
Brzostowski, Matthew ;
Brzostowski, Adam .
Leading Edge (Tulsa, OK), 2009, 28 (04) :414-416
[4]  
Cochard A., 2006, ROTATIONAL MOTIONS S, P391, DOI DOI 10.1007/3-540-31337-0_30
[5]   LUNAR NEAR-SURFACE STRUCTURE [J].
COOPER, MR ;
KOVACH, RL ;
WATKINS, JS .
REVIEWS OF GEOPHYSICS, 1974, 12 (03) :291-308
[6]   Volumetric wavefield recording and wave equation inversion for near-surface material properties [J].
Curtis, A ;
Robertsson, JOA .
GEOPHYSICS, 2002, 67 (05) :1602-1611
[7]   Near-surface Scholte wave velocities at Ekofisk from short noise recordings by seismic noise gradiometry [J].
de Ridder, S. A. L. ;
Biondi, B. L. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (17) :7031-7038
[8]  
Gangi A. F., 1972, Moon, V4, P40, DOI 10.1007/BF00562913
[9]  
Holliger K, 2003, HETEROGENEITY IN THE CRUST AND UPPER MANTLE: NATURE, SCALING AND SEISMIC PROPERTIES, P131
[10]   LUNAR NEAR-SURFACE SHEAR-WAVE VELOCITIES AT THE APOLLO LANDING SITES AS INFERRED FROM SPECTRAL AMPLITUDE RATIOS [J].
HORVATH, P ;
LATHAM, GV ;
NAKAMURA, Y ;
DORMAN, HJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1980, 85 (NB11) :6572-6578