Strong convergence theorems by hybrid methods for nonexpansive mappings with equilibrium problems in Banach spaces

被引:1
作者
Takahashi, Wataru [1 ,2 ]
Yao, Jen-Chih [2 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo, Japan
[2] Natl Sun Yat Sen Univ, Dept Math Appl, Kaohsiung 80424, Taiwan
来源
ADVANCES IN MATHEMATICAL ECONOMICS, VOL 14 | 2011年 / 14卷
基金
日本学术振兴会;
关键词
Nonexpansive mapping; fixed point; hybrid method; Mosco convergence; equilibrium problem; projection; MAXIMAL MONOTONE-OPERATORS; FIXED-POINT THEOREMS; NONLINEAR MAPPINGS; WEAK; APPROXIMATION; RESOLVENTS; FAMILY;
D O I
10.1007/978-4-431-53883-7_9
中图分类号
F [经济];
学科分类号
02 ;
摘要
Our purpose in this paper is to prove strong convergence theorems by hybrid methods for nonexpansive mappings in a Banach space under appropriate conditions. We first prove a strong convergence theorem by the shrinking projection method for semi-positively homogeneous nonexpansive mappings with an equilibrium problem in a Banach space. Next, we obtain another strong convergence theorem by the monotone hybrid method for semi-positively homogeneous nonexpansive mappings with an equilibrium problem in a Banach space. These theorems are proved by using the concept of set convergence.
引用
收藏
页码:197 / +
页数:5
相关论文
共 38 条
  • [1] Alber Y. I., 1994, PANAMERICAN MATH J, V4, P39
  • [2] Alber YI, 1996, LECT NOTES PURE APPL, P15
  • [3] Aoyama K, 2007, FIXED POINT THEOR-RO, V8, P143
  • [4] Aoyama K, 2008, J CONVEX ANAL, V15, P395
  • [5] Aoyama K, 2009, J NONLINEAR CONVEX A, V10, P131
  • [6] Blum E., 1994, Math. student, V63, P123
  • [7] Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
  • [8] Dhompongsa S, 2010, J NONLINEAR CONVEX A, V11, P175
  • [9] Honda T., TAIWANESE J IN PRESS
  • [10] HONDA T, 2010, INT J MATH STAT, V6, P46