Correlations between the deconfining and chiral transitions in holographic QCD

被引:4
|
作者
Li, Ying-Ying [1 ]
Liu, Xing-Lin [1 ]
Liu, Xin-Yi [1 ]
Fang, Zhen [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-TRANSITION; LATTICE QCD; ENERGY; STATE;
D O I
10.1103/PhysRevD.105.034019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider an improved soft-wall AdS/QCD model coupled to an Einstein-dilaton system, which offers a way to study the deconfining and chiral transitions simultaneously. The correlation between these two transitions has been investigated in detail in the Einstein-dilaton-scalar system with the bulk scalar field representing the vacuum of matters in the flavor sector of the model. We find that the effects of the scaling dimension Delta of the dual operator of the dilaton manifest in chiral transitions, although the equations of state can all be matched with the two-flavor lattice results for Delta = 2.5, 3, 3.5 in the decoupling case of beta = 0. In the weak-coupling case with smaller beta, both the equation of state and the chiral transition exhibit a crossover behavior and turn into first-order phase transitions with the increase of beta.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Chiral phase transition of (2+1)-flavor QCD
    Ding, H. -T.
    Hegde, P.
    Karsch, F.
    Lahiri, A.
    Li, S. -T.
    Mukherjee, S.
    Petreczky, P.
    NUCLEAR PHYSICS A, 2019, 982 : 211 - 214
  • [23] Spontaneous chiral symmetry breaking in holographic soft wall models
    Ballon-Bayona, Alfonso
    Mamani, Luis A. H.
    Rodrigues, Diego M.
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [24] Chiral and deconfinement aspects of the QCD transition
    Bazavov, A.
    Bhattacharya, T.
    Cheng, M.
    DeTar, C.
    Ding, H-T.
    Gottlieb, Steven
    Gupta, R.
    Hegde, P.
    Heller, U. M.
    Karsch, F.
    Laermann, E.
    Levkova, L.
    Mukherjee, S.
    Petreczky, P.
    Schmidt, C.
    Soltz, R. A.
    Soeldner, W.
    Sugar, R.
    Toussaint, D.
    Unger, W.
    Vranas, P.
    PHYSICAL REVIEW D, 2012, 85 (05):
  • [25] Magnetic test of chiral dynamics in QCD
    Simonov, Yu. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [26] Chiral symmetry in the confinement phase of QCD
    Campos, S. D.
    MODERN PHYSICS LETTERS A, 2021, 36 (19)
  • [27] Chiral Estimate of QCD Pseudocritical Line
    Zarembo, K.
    JETP LETTERS, 2019, 110 (03) : 155 - 159
  • [28] Chiral phase transition and QCD phase diagram from AdS/QCD
    Fang, Zhen
    Wu, Yue-Liang
    Zhang, Lin
    PHYSICAL REVIEW D, 2019, 99 (03)
  • [29] Holographic Roberge-Weiss transitions
    Aarts, Gert
    Kumar, S. Prem
    Rafferty, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (07):
  • [30] The BEST framework for the search for the QCD critical point and the chiral magnetic effect
    An, Xin
    Bluhm, Marcus
    Du, Lipei
    Dunne, Gerald, V
    Elfner, Hannah
    Gale, Charles
    Grefa, Joaquin
    Heinz, Ulrich
    Huang, Anping
    Karthein, Jamie M.
    Kharzeev, Dmitri E.
    Koch, Volker
    Liao, Jinfeng
    Li, Shiyong
    Martinez, Mauricio
    McNelis, Michael
    Mroczek, Debora
    Mukherjee, Swagato
    Nahrgang, Marlene
    Acuna, Angel R. Nava
    Noronha-Hostler, Jacquelyn
    Oliinychenko, Dmytro
    Parotto, Paolo
    Portillo, Israel
    Pradeep, Maneesha Sushama
    Pratt, Scott
    Rajagopal, Krishna
    Ratti, Claudia
    Ridgway, Gregory
    Schafer, Thomas
    Schenke, Bjorn
    Shen, Chun
    Shi, Shuzhe
    Singh, Mayank
    Skokov, Vladimir
    Son, Dam T.
    Sorensen, Agnieszka
    Stephanov, Mikhail
    Venugopalan, Raju
    Vovchenko, Volodymyr
    Weller, Ryan
    Yee, Ho-Ung
    Yin, Yi
    NUCLEAR PHYSICS A, 2022, 1017