Removing artifacts from TMS-evoked EEG: A methods review and a unifying theoretical framework

被引:28
作者
Hernandez-Pavon, Julio C. [1 ,2 ,3 ]
Kugiumtzis, Dimitris [4 ]
Zrenner, Christoph [5 ,6 ,7 ]
Kimiskidis, Vasilios K. [8 ,9 ]
Metsomaa, Johanna [5 ,6 ,10 ]
机构
[1] Shirley Ryan AbilityLab Rehabil Inst Chi, Legs Walking Lab, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Sch Med, Dept Phys Med & Rehabil, Chicago, IL USA
[3] Ctr Brain Stimulat, Shirley Ryan AbilityLab, Chicago, IL USA
[4] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Fac Engn, Thessaloniki, Greece
[5] Univ Tubingen, Dept Neurol & Stroke, Tubingen, Germany
[6] Univ Tubingen, Hertie Inst Clin Brain Res, Tubingen, Germany
[7] Ctr Addict & Mental Hlth, Temerty Ctr Therapeut Brain Intervent, Toronto, ON, Canada
[8] Univ Toronto, Dept Psychiat, Toronto, ON, Canada
[9] Aristotle Univ Thessaloniki, Sch Med, Dept Neurol 1, Thessaloniki, Greece
[10] Aalto Univ, Dept Neurosci & Biomed Engn, Espoo, Finland
关键词
Transcranial magnetic stimulation; Electroencephalography; Artifacts; Spatial filters; Temporal filters; Independent component analysis; Principal component analysis; Signal space projection; Beamforming; TRANSCRANIAL MAGNETIC STIMULATION; INDEPENDENT COMPONENT ANALYSIS; RESPONSES; MEG; EXCITABILITY; SEPARATION; ALGORITHM; TESA;
D O I
10.1016/j.jneumeth.2022.109591
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a technique for studying cortical excitability and connectivity in health and disease, allowing basic research and potential clinical applications. A major methodological issue, severely limiting the applicability of TMS-EEG, relates to the contamination of EEG signals by artifacts of biologic or non-biologic origin. To solve this problem, several methods, based on independent component analysis (ICA), principal component analysis (PCA), signal space projection (SSP), and other approaches, have been developed over the last decade. This article is divided into two parts. In the first part, we review the theoretical background of the currently available TMS-EEG artifact removal methods. In the second part, we formally introduce the mathematics underpinnings of the cleaning methods. We classify them into spatial and temporal filters based on their properties. Since the most frequently used TMS-EEG cleaning approach are spatial filter methods, we focus on them and introduce beamforming as a unified framework of the most popular spatial filtering techniques. This unifying approach enables the comparative assessment of these methods by highlighting their differences in terms of assumptions, challenges, and applicability for different types of artifacts and data. The different properties and challenges of the methods discussed are illustrated with both simulated and recorded data. This article targets non-mathematical and mathematical audiences. Accordingly, those readers interested in essential background information on these methods can focus on Section 2. Whereas theory-oriented readers may find Section 3 helpful for making informed decisions between existing methods and developing the methodology further.
引用
收藏
页数:21
相关论文
共 67 条
[1]   TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation [J].
Atluri, Sravya ;
Frehlich, Matthew ;
Mei, Ye ;
Dominguez, Luis Garcia ;
Rogasch, Nigel C. ;
Wong, Willy ;
Daskalakis, Zafiris J. ;
Farzan, Faranak .
FRONTIERS IN NEURAL CIRCUITS, 2016, 10
[2]   Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation [J].
Bai, Yang ;
Wan, Xiaohong ;
Zeng, Ke ;
Ni, Yinmei ;
Qiu, Lirong ;
Li, Xiaoli .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (06)
[3]   Reproducibility in TMS-EEG studies: A call for data sharing, standard procedures and effective experimental control [J].
Belardinelli, Paolo ;
Biabani, Mana ;
Blumberger, Daniel M. ;
Bortoletto, Marta ;
Casarotto, Silvia ;
David, Olivier ;
Desideri, Debora ;
Etkin, Amit ;
Ferrarelli, Fabio ;
Fitzgerald, Paul B. ;
Fornito, Alex ;
Gordon, Pedro C. ;
Gosseries, Olivia ;
Harquel, Sylvain ;
Julkunen, Petro ;
Keller, Corey J. ;
Kimiskidis, Vasilios K. ;
Lioumis, Pantelis ;
Miniussi, Carlo ;
Rosanova, Mario ;
Rossi, Simone ;
Sarasso, Simone ;
Wu, Wei ;
Zrenner, Christoph ;
Daskalakis, Zafiris J. ;
Rogasch, Nigel C. ;
Massimini, Marcello ;
Ziemann, Ulf ;
Ilmoniemi, Risto J. .
BRAIN STIMULATION, 2019, 12 (03) :787-790
[4]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[5]   A MULTIPLE SOURCE APPROACH TO THE CORRECTION OF EYE ARTIFACTS [J].
BERG, P ;
SCHERG, M .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1994, 90 (03) :229-241
[6]   EEG-Guided Transcranial Magnetic Stimulation Reveals Rapid Shifts in Motor Cortical Excitability during the Human Sleep Slow Oscillation [J].
Bergmann, Til O. ;
Moelle, Matthias ;
Schmidt, Marlit A. ;
Lindner, Christoph ;
Marshall, Lisa ;
Born, Jan ;
Siebner, Hartwig R. .
JOURNAL OF NEUROSCIENCE, 2012, 32 (01) :243-253
[7]   The impact of artifact removal approaches on TMS-EEG signal [J].
Bertazzoli, Giacomo ;
Esposito, Romina ;
Mutanen, Tuomas P. ;
Ferrari, Clarissa ;
Ilmoniemi, Risto J. ;
Miniussi, Carlo ;
Bortoletto, Marta .
NEUROIMAGE, 2021, 239
[8]   Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials [J].
Biabani, Mana ;
Fornito, Alex ;
Mutanen, Tuomas P. ;
Morrow, James ;
Rogasch, Nigel C. .
BRAIN STIMULATION, 2019, 12 (06) :1537-1552
[9]  
Brebbia C.A., 1984, BOUNDARY ELEMENT TEC
[10]   EEG Responses to TMS Are Sensitive to Changes in the Perturbation Parameters and Repeatable over Time [J].
Casarotto, Silvia ;
Lauro, Leonor J. Romero ;
Bellina, Valentina ;
Casali, Adenauer G. ;
Rosanova, Mario ;
Pigorini, Andrea ;
Defendi, Stefano ;
Mariotti, Maurizio ;
Massimini, Marcello .
PLOS ONE, 2010, 5 (04)