LiCr( MoO4) 2: a new high specific capacity cathode material for lithium ion batteries

被引:29
作者
Feng, Kai [1 ]
Wang, Fuxiang [1 ]
Yang, Xin [1 ]
Zhang, Hongzhang [2 ,3 ]
Li, Xianfeng [2 ,3 ]
Zhang, Huamin [2 ,3 ]
机构
[1] Yantai Univ, Coll Chem & Engn, Shandong Collaborat Innovat Ctr Light Hydrocarbon, Yantai 264005, Peoples R China
[2] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian Inst Chem Phys, Div Energy Storage, Zhongshan Rd 457, Dalian 116023, Peoples R China
[3] Collaborat Innovat Ctr Chem Energy Mat iChEM, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY-DENSITY; LONG CYCLE STABILITY; POSITIVE-ELECTRODE; ELECTROCHEMICAL PROPERTIES; ANODE MATERIALS; OXIDE; LI3V2(PO4)(3); COMPOSITE; DESIGN; MN;
D O I
10.1039/c8ta10274k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdate polyanion cathode materials have received lots of research interest for their high specific capacity, high cycling stability and interesting physical and chemical properties. Here, LiCr(MoO4)(2), a new deintercalation-intercalation type cathode material for lithium ion batteries, is synthesized and studied. Ultraviolet-visible-near-infrared diffuse reflection, density functional theory calculation and four-probe measurement results suggest that LiCr(MoO4)(2) possesses a narrow band gap and high electronic conductivity. Bond-valence-sum maps calculation and electrochemical impedance spectroscopy prove the fast lithium ion transport rate of LiCr(MoO4)(2). Benefiting from these advantages, LiCr(MoO4)(2) delivers a high specific capacity (250 mA h g(-1)) and good rate performances. The electrochemical reaction mechanism is studied by in situ X-ray diffraction, which indicates that the lithium ion deintercalation-intercalation is a solid solution process with Cr3+/2+ and Mo6+/5+ redox.
引用
收藏
页码:567 / 573
页数:7
相关论文
共 48 条
[1]   Electrochemical study of Li3Fe(MoO4)3 as positive electrode in lithium cells [J].
Alvarez-Vega, M ;
Amador, U ;
Arroyo-de Dompablo, ME .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1306-A1311
[2]  
Amin K., 2017, ADV MATER, P1
[3]   Activation and degradation of electrospun LiFePO4 battery cathodes [J].
Bachtin, Krystyna ;
Kramer, Dominik ;
Chakravadhanula, V. S. Kiran ;
Mu, Xiaoke ;
Trouillet, Vanessa ;
Kaus, Maximilian ;
Indris, Sylvio ;
Ehrenberg, Helmut ;
Roth, Christina .
JOURNAL OF POWER SOURCES, 2018, 396 :386-394
[4]   Synthesis and electrochemical insertion properties of the layered LixMoO2 phases (x = 0.74, 0.85, and 1.00) [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (12) :A252-A256
[5]   Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries [J].
Chen, Zhongxue ;
Qiu, Shen ;
Cao, Yuliang ;
Qian, Jiangfeng ;
Ai, Xinping ;
Xie, Kai ;
Hong, Xiaobin ;
Yang, Hanxi .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (16) :4988-4992
[6]   "Three-in-One:" A New 3D Hybrid Structure of Li3V2(PO4)3 @ Biomorphic Carbon for High-Rate and Low-Temperature Lithium Ion Batteries [J].
Cheng, Yi ;
Feng, Kai ;
Wang, Huaiqing ;
Zhang, Hongzhang ;
Li, Xianfeng ;
Zhang, Huamin .
ADVANCED MATERIALS INTERFACES, 2017, 4 (22)
[7]   One-pot synthesis of 3D hierarchical porous Li3V2(PO4)3/C nanocomposites for high-rate and long-life lithium ion batteries [J].
Cheng, Yi ;
Zhou, Wei ;
Feng, Kai ;
Zhang, Hongzhang ;
Li, Xianfeng ;
Zhang, Huamin .
RSC ADVANCES, 2017, 7 (61) :38415-38423
[8]   Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries [J].
Cheng, Yi ;
Ni, Xiao ;
Feng, Kai ;
Zhang, Hongzhang ;
Li, Xianfeng ;
Zhang, Huamin .
JOURNAL OF POWER SOURCES, 2016, 326 :203-210
[9]   A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries [J].
Cheng, Yi ;
Feng, Kai ;
Zhou, Wei ;
Zhang, Hongzhang ;
Li, Xianfeng ;
Zhang, Huamin .
DALTON TRANSACTIONS, 2015, 44 (40) :17579-17586
[10]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671