Thermal conductivity of interconnected silicon nanoparticles: Application to porous silicon nanostructures

被引:23
作者
Chantrenne, P
Lysenko, V
机构
[1] Inst Natl Sci Appl, CNRS, UMR 5008, Thermal Ctr Lyon CETHIL, F-69621 Villeurbanne, France
[2] Inst Natl Sci Appl, CNRS, UMR 5511, LPN, F-69621 Villeurbanne, France
关键词
D O I
10.1103/PhysRevB.72.035318
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model describing phonon heat conduction in silicon nanowires formed by interconnected nanoparticles is developed from basic principles of the elementary kinetic theory of gases. The thermal transport in a network of the interconnected nanoparticles forming a nanowire is found to be mainly controlled by the interconnection area. In particular, thermal conductivity of the network is strongly dependent on the ratio of the nanoparticle dimension to the interconnection one. Contrary to the case of classical silicon nanowires having a constant section dimension, the thermal conductivity of the interconnected nanoparticles with a given interconnection dimension decreases along with the nanoparticle dimension increase. The model is applied for thermal transport analysis in porous silicon (PS) nanostructures. In particular, it allows, for the first time, deducing of new structural information on PS nanoscale skeleton such as porosity dependent interconnection dimension and percolation strength of the nanoparticle network.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[2]  
ASHEGHI M, 1998, ASME, V120, P30, DOI DOI 10.1115/1.2830059
[3]   LATTICE VIBRATIONS IN SILICON AND GERMANIUM [J].
BROCKHOUSE, BN .
PHYSICAL REVIEW LETTERS, 1959, 2 (06) :256-258
[4]   Topological surface states in deformed quantum wires [J].
Cantele, G ;
Ninno, D ;
Iadonisi, G .
PHYSICAL REVIEW B, 2000, 61 (20) :13730-13736
[5]   Note on the conduction of heat in crystals [J].
Casimir, HBG .
PHYSICA, 1938, 5 :495-500
[6]   An analytical model for the thermal conductivity of silicon nanostructures [J].
Chantrenne, P ;
Barrat, JL ;
Blase, X ;
Gale, JD .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[7]   Finite size effects in determination of thermal conductivities: Comparing molecular dynamics results with simple models [J].
Chantrenne, P ;
Barrat, JL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (04) :577-585
[8]  
FEYH A, 2004, 4 INT C POR SEM SCI, P294
[9]  
HALIMAOUI A, 1997, PROPERTIES POROUS SI, P12
[10]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&