Tunable Layered (Na,Mn)V8O20•nH2O Cathode Material for High-Performance Aqueous Zinc Ion Batteries

被引:165
|
作者
Du, Min [1 ]
Liu, Chaofeng [2 ]
Zhang, Feng [1 ]
Dong, Wentao [1 ]
Zhang, Xiaofei [1 ]
Sang, Yuanhua [1 ]
Wang, Jian-Jun [1 ]
Guo, Yu-Guo [3 ]
Liu, Hong [1 ,4 ]
Wang, Shuhua [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[3] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, Beijing Natl Lab Mol Sci,Inst Chem, Beijing 100190, Peoples R China
[4] Univ Jinan, Inst Adv Interdisciplinary Res, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous zinc-ion batteries; dissolution; doped; energy storage mechanisms; transition metals; CHEMISTRY;
D O I
10.1002/advs.202000083
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) show promise for use in energy storage. However, the development of ZIBs has been plagued by the limited cathode candidates, which usually show low capacity or poor cycling performance. Here, a reversible Zn//(Na,Mn)V8O20 center dot nH(2)O system is reported, the introduction of manganese (Mn) ions in NaV8O20 to form (Na,Mn)V8O20 exhibits an outstanding electrochemical performance with a capacity of 377 mA h g(-1) at a current density of 0.1 A g(-1). Through experimental and theoretical results, it is discovered that the outstanding performance of (Na,Mn)V8O20 center dot nH(2)O is ascribed to the Mn2+/Mn3+-induced high electrical conductivity and Na+-induced fast migration of Zn2+. Other cathode materials derived from (Na,Mn)V8O20 center dot nH(2)O by substituting Mn with Fe, Co, Ni, Ca, and K are explored to confirm the unique advantages of transition metal ions. With an increase in Mn content in NaV8O20, (Na-0.33,Mn-0.65)V8O20 center dot nH(2)O can deliver a reversible capacity of 150 mA h g(-1) and a capacity retention of 99% after 1000 cycles, which may open new opportunities for the development of high-performance aqueous ZIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] NH4V3O8 Rectangular Nanotube: A Novel High-Performance Cathode Material for Lithium Ion Batteries
    Lingjiang Kou
    Jiajia Song
    Applied Physics A, 2021, 127
  • [22] NH4V3O8 Rectangular Nanotube: A Novel High-Performance Cathode Material for Lithium Ion Batteries
    Kou, Lingjiang
    Song, Jiajia
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (03):
  • [23] Reversible Molecular and Ionic Storage Mechanisms in High-Performance Zn0.1V2O5•nH2O Xerogel Cathode for Aqueous Zn-Ion Batteries
    Zhu, Kaiyue
    Wu, Tao
    van den Bergh, Wessel
    Stefik, Morgan
    Huang, Kevin
    ACS NANO, 2021, 15 (06) : 10678 - 10688
  • [24] Electrodeposited Layered Sodium Vanadyl Phosphate (NaxVOPO4•nH2O) as Cathode Material for Aqueous Rechargeable Zinc Metal Batteries
    Dilwale, Swati
    Ghosh, Meena
    Vijayakumar, Vidyanand
    Kurungot, Sreekumar
    ENERGY & FUELS, 2022, 36 (12) : 6520 - 6531
  • [25] V3O7•H2O@CNTs as cathode for high-performance aqueous zinc-ion batteries
    Ba, Ying
    Wang, Haoshen
    Zhang, Pengchao
    Wen, Zhongsheng
    Li, Song
    Sun, Juncai
    MATERIALS LETTERS, 2024, 355
  • [26] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [27] A Durable Na0.56V2O5 Nanobelt Cathode Material Assisted by Hybrid Cationic Electrolyte for High-Performance Aqueous Zinc-Ion Batteries
    Gao, Ping
    Ru, Qiang
    Yan, Honglin
    Cheng, Shikun
    Liu, Yang
    Hou, Xianhua
    Wei, Li
    Ling, Francis Chi-Chung
    CHEMELECTROCHEM, 2020, 7 (01) : 283 - 288
  • [28] Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries
    Pang, Qiang
    He, Wei
    Yu, Xiangyu
    Yang, Siyu
    Zhao, Hainan
    Fu, Yao
    Xing, Mingming
    Tian, Ying
    Luo, Xixian
    Wei, Yingjin
    APPLIED SURFACE SCIENCE, 2021, 538
  • [29] Layered MnO2@PDA as cathode material toward high-performance aqueous zinc-ion batteries
    Li, Haiyang
    Wang, Menglei
    Lei, Xinyu
    Hu, Boyou
    Zhang, Hanlu
    Xing, Yutong
    Zhang, Meng
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [30] Na+ Intercalated V2O5 Derived from V-MOF as High-Performance Cathode for Aqueous Zinc-Ion Batteries
    Liu, Mengmei
    Li, Zhihua
    Zhang, Yibo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (11)