Vertex distinguishing equitable total chromatic number of join graph

被引:17
|
作者
Wang, Zhi-wen [1 ,2 ]
Yan, Li-hong [2 ]
Zhang, Zhong-fu [3 ]
机构
[1] Yeungnam Univ, Dept Math, Kyongsan 712749, Kyongbuk, South Korea
[2] Xianyang Normal Univ, Dept Math, Xianyang 712000, Peoples R China
[3] Lanzhou Jiaotong Univ, Sch Math, Lanzhou 730070, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2007年 / 23卷 / 03期
关键词
path; cycle; join graph; vertex distinguishing equitable total chromatic number;
D O I
10.1007/s10255-007-0383-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs P-n V P-n, C-n V C-n and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs P-n V P-n and C-n V C-n.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [31] ON EQUITABLE CHROMATIC NUMBER OF TADPOLE GRAPH Tm,n
    Praveena, K.
    Venkatachalam, M.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1638 - 1646
  • [32] RESULTS ON GRUNDY CHROMATIC NUMBER OF JOIN GRAPH OF GRAPHS
    Maragatham, R. Stella
    Subramanian, A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 40 (01): : 87 - 100
  • [33] Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number
    Hatami, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (02) : 246 - 256
  • [34] On the vertex-distinguishing edge chromatic number of Cm ∨ Cn
    Jingwen, Li
    Baogen, Xu
    Zhang Zhongfu
    PROCEEDINGS OF THE CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY, VOL 4, NO 3, 2008, : 235 - 237
  • [35] A NOTE ON THE LINE-DISTINGUISHING CHROMATIC NUMBER AND THE CHROMATIC INDEX OF A GRAPH
    SALVI, NZ
    JOURNAL OF GRAPH THEORY, 1993, 17 (05) : 589 - 591
  • [36] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    KEXUE TONGBAO, 1987, 32 (17): : 1223 - 1223
  • [37] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    张忠辅
    张建勋
    王建方
    ScienceBulletin, 1987, (17) : 1223 - 1223
  • [38] TOTAL DOMINATOR CHROMATIC NUMBER OF A GRAPH
    Kazemi, Adel P.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 57 - 68
  • [39] Spectral Inequalities on Independence Number, Chromatic Number, and Total Chromatic Number of a Graph
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (1-2): : 41 - 46
  • [40] Equitable Total Chromatic Number of Krxp for p Even
    da Silva, Anderson G.
    Dantas, Simone
    Sasaki, Diana
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 685 - 697